


default search action
MLHC 2017: Boston, Massachusetts, USA
- Finale Doshi-Velez, Jim Fackler, David C. Kale, Rajesh Ranganath, Byron C. Wallace, Jenna Wiens:

Proceedings of the Machine Learning for Health Care Conference, MLHC 2017, Boston, Massachusetts, USA, 18-19 August 2017. Proceedings of Machine Learning Research 68, PMLR 2017 - Jeremy C. Weiss:

Piecewise-constant parametric approximations for survival learning. 1-12 - Amirreza Farnoosh, Sarah Ostadabbas, Mehrdad Nourani:

Spatially-Continuous Plantar Pressure Reconstruction Using Compressive Sensing. 13-24 - Savannah L. Bergquist, Gabriel A. Brooks, Nancy L. Keating, Mary Beth Landrum, Sherri Rose:

Classifying Lung Cancer Severity with Ensemble Machine Learning in Health Care Claims Data. 25-38 - Jose Castela Forte, Marco A. Wiering, Hjalmar R. Bouma, Fred Geus, Anne H. Epema:

Predicting long-term mortality with first week post-operative data after Coronary Artery Bypass Grafting using Machine Learning models. 39-58 - Madalina Fiterau, Suvrat Bhooshan, Jason A. Fries, Charles Bournhonesque, Jennifer L. Hicks, Eni Halilaj, Christopher Ré, Scott L. Delp:

ShortFuse: Biomedical Time Series Representations in the Presence of Structured Information. 59-74 - Albert Haque, Michelle Guo, Alexandre Alahi, Serena Yeung, Zelun Luo, Alisha Rege, Jeffrey Jopling, N. Lance Downing, William Beninati, Amit Singh, Terry Platchek, Arnold Milstein, Li Fei-Fei:

Towards Vision-Based Smart Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance. 75-87 - Hei Law, Khurshid Ghani, Jia Deng:

Surgeon Technical Skill Assessment using Computer Vision based Analysis. 88-99 - Nathan H. Ng, Rodney A. Gabriel, Julian J. McAuley, Charles Elkan, Zachary C. Lipton:

Predicting Surgery Duration with Neural Heteroscedastic Regression. 100-111 - Samuele Fiorini, Alessandro Verri, Annalisa Barla, Andrea Tacchino, Giampaolo Brichetto:

Temporal prediction of multiple sclerosis evolution from patient-centered outcomes. 112-125 - Matteo Ruffini, Ricard Gavaldà, Esther Limon:

Clustering Patients with Tensor Decomposition. 126-146 - Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:

Continuous State-Space Models for Optimal Sepsis Treatment: a Deep Reinforcement Learning Approach. 147-163 - Yinchong Yang, Peter A. Fasching, Volker Tresp:

Modeling Progression Free Survival in Breast Cancer with Tensorized Recurrent Neural Networks and Accelerated Failure Time Models. 164-176 - Yujia Bao, Zhaobin Kuang, Peggy L. Peissig, David Page, Rebecca Willett:

Hawkes Process Modeling of Adverse Drug Reactions with Longitudinal Observational Data. 177-190 - Bryan Conroy, Minnan Xu-Wilson, Asif Rahman:

Patient Similarity Using Population Statistics and Multiple Kernel Learning. 191-203 - Ronnachai Jaroensri, Amy Zhao, Guha Balakrishnan, Derek Lo, Jeremy D. Schmahmann, Frédo Durand, John V. Guttag:

A Video-Based Method for Automatically Rating Ataxia. 204-216 - Maria Jahja, Daniel J. Lizotte:

Visualizing Clinical Significance with Prediction and Tolerance Regions. 217-230 - Elizabeth C. Lorenzi, Stephanie L. Brown, Zhifei Sun, Katherine A. Heller:

Predictive Hierarchical Clustering: Learning clusters of CPT codes for improving surgical outcomes. 231-242 - Joseph Futoma, Sanjay Hariharan, Katherine A. Heller, Mark P. Sendak, Nathan Brajer, Meredith Clement, Armando Bedoya, Cara O'Brien:

An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection. 243-254 - Kazi T. Islam, Christian R. Shelton, Juan I. Casse, Randall C. Wetzel:

Marked Point Process for Severity of Illness Assessment. 255-270 - Yuan Ling, Sadid A. Hasan, Vivek V. Datla, Ashequl Qadir, Kathy Lee, Joey Liu, Oladimeji Farri:

Diagnostic Inferencing via Improving Clinical Concept Extraction with Deep Reinforcement Learning: A Preliminary Study. 271-285 - Edward Choi, Siddharth Biswal, Bradley A. Malin, Jon Duke, Walter F. Stewart, Jimeng Sun:

Generating Multi-label Discrete Patient Records using Generative Adversarial Networks. 286-305 - Silvio Amir, Glen Coppersmith, Paula Carvalho, Mário J. Silva, Byron C. Wallace:

Quantifying Mental Health from Social Media with Neural User Embeddings. 306-321 - Harini Suresh, Nathan Hunt, Alistair E. W. Johnson, Leo Anthony Celi, Peter Szolovits, Marzyeh Ghassemi:

Clinical Intervention Prediction and Understanding with Deep Neural Networks. 322-337 - Arya A. Pourzanjani, Tie Bo Wu, Richard M. Jiang, Mitchell J. Cohen, Linda R. Petzold:

Understanding Coagulopathy using Multi-view Data in the Presence of Sub-Cohorts: A Hierarchical Subspace Approach. 338-351 - Zihan Wang, Michael Brudno, Orion J. Buske:

Towards a Directory of Rare Disease Specialists: Identifying Experts from Publication History. 352-360 - Alistair E. W. Johnson, Tom J. Pollard

, Roger G. Mark:
Reproducibility in critical care: a mortality prediction case study. 361-376

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














