


default search action
NIPS 1989: Denver, CO, USA
- David S. Touretzky:

Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30, 1989]. Morgan Kaufmann 1990, ISBN 1-55860-100-7
Part 1: Neuroscience
- James A. Simmons:

Acoustic-Imaging Computations by Echolocating Bats: Unification of Diversely-Represented Stimulus Features into Whole Images. 2-9 - Clay Spence, John C. Pearson:

The Computation of Sound Source Evaluation in the Barn Owl. 10-17 - Ronald M. Harris-Warrick:

Mechanisms for Neuromodulation of Biological Neural Networks. 18-27 - Shawn R. Lockery, Yan Fang, Terrence J. Sejnowski:

Neural Network Analysis of Distributed Representations of Dynamical Sensory-Motor Transormations in the Leech. 28-35 - William Bialek, Fred Rieke, Robert R. de Ruyter van Steveninck, David Warland:

Reading a Neural Code. 36-43 - Randall D. Beer, Hillel J. Chiel:

Neural Implementation of Motivated Behavior: Feeding in an Artificial Insect. 44-51 - Kamil A. Grajski, Michael Merzenich:

Neural Network Simulation of Somatosensory Representational Plasticity. 52-59 - Mark E. Nelson, James M. Bower:

Computational Efficiency: A Common Organizing Principle for Parallel Computer Maps and Brain Maps? 60-67 - Bill Baird:

Associative Memory in a Simple Model of Oscillating Cortex. 68-75 - Daniel M. Kammen, Christof Koch, Philip J. Holmes:

Collective Oscillations in the Visual Cortex. 76-83 - Matthew A. Wilson, James M. Bower:

Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks. 84-91 - Jack D. Cowan, A. E. Friedman:

Development and Regeneration of Eye-Brain Maps: A Computational Model. 92-99 - David Servan-Schreiber, Harry Printz, Jonathan D. Cohen:

The Effect of Catecholamines on Performance: From Unit to System Behavior. 100-108 - Michael C. Crair, William Bialek:

Non-Boltzmann Dynamics in Networks of Spiking Neurons. 109-116 - Maurice Lee, James M. Bower:

A Computer Modeling Approach to Understanding the Inferior Olive and Its Relationships to the Cerebellar Cortex in Rats. 117-124 - William R. Softky, Daniel M. Kammen:

Can Simple Cells Learn Curves? A Hebbian Model in a Structured Environment. 125-132 - Alex Chernajvsky, John E. Moody:

Note on Development of Modularity in Simple Cortical Models. 133-140 - G. T. Kenyon, Eberhard E. Fetz, R. D. Puff:

Effects of Firing Synchrony on Signal Propagation in Layered Networks. 141-148 - Paul C. Rhodes:

A Systematic Study of the Input/Output Properties of a 2 Compartment Model Neuron With Active Membranes. 149-159 - Dun-Sung Tang:

Analytic Solutions to the Formation of Feature-Analysing Cells of a Three-Layer Feedforward Visual Information Processing Neural Net. 160-165
Part 2: Speech and Signal Processing
- Yuchun Lee, Richard Lippmann:

Practical Characteristics of Neural Network and Conventional Pattern Classifiers on Artificial and Speech Problems. 168-177 - Kevin J. Lang, Geoffrey E. Hinton:

Dimensionality Reduction and Prior Knowledge in E-Set Recognition. 178-185 - Hervé Bourlard, Nelson Morgan:

A Continuous Speech Recognition System Embedding MLP into HMM. 186-193 - William Y. Huang, Richard Lippmann:

HMM Speech Recognition with Neural Net Discrimination. 194-202 - John B. Hampshire II, Alex Waibel:

Connectionist Architectures for Multi-Speaker Phoneme Recognition. 203-210 - John S. Bridle:

Training Stochastic Model Recognition Algorithms as Networks can Lead to Maximum Mutual Information Estimation of Parameters. 211-217 - Yoshua Bengio, Renato de Mori, Régis Cardin:

Speaker Independent Speech Recognition with Neural Networks and Speech Knowledge. 218-225 - Jim Mann:

The Effects of Circuit Integration on a Feature Map Vector Quantizer. 226-231 - Terrence J. Sejnowski, Ben P. Yuhas, Moise H. Goldstein Jr., Robert E. Jenkins:

Combining Visual and Acoustic Speech Signals with a Neural Network Improves Intelligibility. 232-239 - Susan Ciarrocca Lee:

Using a Translation-Invariant Neural Network to Diagnose Heart Arrhythmia. 240-247 - Donald B. Malkoff:

A Neural Network for Real-Time Signal Processing. 248-255
Part 3: Vision
- Michael Seibert, Allen M. Waxman:

Learning Aspect Graph Representations from View Sequences. 258-265 - Richard S. Zemel, Michael Mozer, Geoffrey E. Hinton:

TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations. 266-273 - Daphna Weinshall, Shimon Edelman, Heinrich H. Bülthoff:

A Self-Organizing Multiple-View Representations of 3D Objects. 274-281 - Pentti Kanerva:

Contour-Map Encoding of Shape for Early Vision. 282-289 - Paul A. Viola:

Neurally Inspired Plasticity in Oculomotor Processes. 290-297 - Toshiaki Okamoto, Mitsuo Kawato, Toshio Inui, Sei Miyake:

Model Based Image Compression and Adaptive Data Representaion by Interacting Filter Banks. 298-305
Part 4: Optimization and Control
- Jim Donnett, Tim Smithers:

Neuronal Group Selection Theory: A Grounding in Robotics. 308-315 - Christopher G. Atkeson:

Using Local Models to Control Movement. 316-323 - Michael I. Jordan, Robert A. Jacobs:

Learning to Control an Unstable System with Forward Modeling. 324-331 - Michael Hormel:

A Self-organizing Associative Memory System for Control Applications. 332-339 - Michael J. Carter, Franklin J. Rudolph, Adam J. Nucci:

Operational Fault Tolerance of CMAC Networks. 340-347 - Oluseyi Farotimi, Amir Dembo, Thomas Kailath:

Neural Network Weight Matrix Synthesis Using Optimal Control Techniques. 348-354 - Gintaras V. Reklaitis, Athanasios G. Tsirukis, Manoel Fernando Tenorio:

Generalized Hopfield Networks and Nonlinear Optimization. 355-362
Part 5: Other Applications
- Ajay N. Jain, Alex Waibel:

Incremental Parsing by Modular Recurrent Connectionist Networks. 364-371 - David S. Touretzky, Deirdre W. Wheeler:

A Computational Basis for Phonology. 372-379 - C. Lee Giles

, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, Dong Chen:
Higher Order Recurrent Networks and Grammatical Inference. 380-387 - Kurt R. Smith, Michael I. Miller:

Bayesian Inference of Regular Grammar and Markov Source Models. 388-395 - Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E. Hubbard, Lawrence D. Jackel:

Handwritten Digit Recognition with a Back-Propagation Network. 396-404 - Gale Martin, James A. Pittman:

Recognizing Hand-Printed Letters and Digits. 405-414 - Yoshihiro Mori, Kazuki Joe:

A Large-Scale Neural Network Which Recognizes Handwritten Kanji Characters. 415-422 - Yoshua Bengio, Samy Bengio, Yannick Pouliot, Patrick Agin:

A Neural Network to Detect Homologies in Proteins. 423-430 - David S. Touretzky, Gillette Elvgreen III:

Rule Representations in a Connectionist Chunker. 431-438 - Michael Mozer, Jonathan Bachrach:

Discovering the Structure of a Reactive Environment by Exploration. 439-446 - Steven A. Harp, Tariq Samad, Aloke Guha:

Designing Application-Specific Neural Networks Using the Genetic Algorithm. 447-454 - David Rogers:

Predicting Weather Using a Genetic Memory: A Combination of Kanerva's Sparse Distributed Memory with Holland's Genetic Algorithms. 455-464 - Jakub Wejchert, Gerald Tesauro:

Neural Network Visualization. 465-472
Part 6: New Learning Algorithms
- Bartlett W. Mel, Christof Koch:

Sigma-Pi Learning: On Radial Basis Functions and Cortical Associative Learning. 474-481 - Avijit Saha, James D. Keeler:

Algorithms for Better Representation and Faster Learning in Radial Basis Function Networks. 482-489 - Tony Bell:

Learning in Higher-Order "Artificial Dendritic Trees". 490-497 - Jacob Barhen, Nikzad Benny Toomarian, Sandeep Gulati:

Adjoint Operator Algorithms for Faster Learning in Dynamical Neural Networks. 498-508 - Conrad C. Galland, Geoffrey E. Hinton:

Discovering High Order Features with Mean Field Modules. 509-515 - Tal Grossman:

The CHIR Algorithm for Feed Forward Networks with Binary Weights. 516-523 - Scott E. Fahlman, Christian Lebiere:

The Cascade-Correlation Learning Architecture. 524-532 - Stephen Jose Hanson:

Meiosis Networks. 533-541 - John Kassebaum, Manoel Fernando Tenorio, Christoph Schaefers:

The Cocktail Party Problem: Speech/Data Signal Separation Comparison between Backpropagation and SONN. 542-549 - David H. Ackley, Michael L. Littman:

Generalization and Scaling in Reinforcement Learning. 550-557 - Richard Rohwer:

The "Moving Targets" Training Algorithm. 558-565 - Les E. Atlas, David A. Cohn, Richard E. Ladner

:
Training Connectionist Networks with Queries and Selective Sampling. 566-573 - Steven J. Nowlan:

Maximum Likelihood Competitive Learning. 574-582 - Michail Zak, Nikzad Benny Toomarian:

Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach. 583-589 - Amir F. Atiya, Yaser S. Abu-Mostafa:

A Method for the Associative Storage of Analog Vectors. 590-595
Part 7: Empirical Analyses
- Yann LeCun, John S. Denker, Sara A. Solla:

Optimal Brain Damage. 598-605 - Subutai Ahmad, Gerald Tesauro, Yu He:

Asymptotic Convergence of Backpropagation: Numerical Experiments. 606-613 - Sheri L. Gish, W. E. Blanz:

Comparing the Performance of Connectionist and Statistical Classifiers on an Image Segmentation Problem. 614-621 - Les E. Atlas, Ronald A. Cole, Jerome T. Connor, Mohamed A. El-Sharkawi, Robert J. Marks II, Yeshwant K. Muthusamy, Etienne Barnard:

Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications. 622-629 - Nelson Morgan, Hervé Bourlard:

Generalization and Parameter Estimation in Feedforward Netws: Some Experiments. 630-637 - David Zipser:

Subgrouping Reduces Complexity and Speeds Up Learning in Recurrent Networks. 638-641 - Yves Chauvin:

Dynamic Behavior of Constained Back-Propagation Networks. 642-649 - William P. Lincoln, Josef Skrzypek:

Synergy of Clustering Multiple Back Propagation Networks. 650-657
Part 8: Theoretical Analyses
- Davi Geiger, Federico Girosi:

Coupled Markov Random Fields and Mean Field Theory. 660-667 - Amir Dembo, Kai-Yeung Siu, Thomas Kailath:

Complexity of Finite Precision Neural Network Classifier. 668-675 - Eric B. Baum:

The Perceptron Algorithm Is Fast for Non-Malicious Distributions. 676-685 - Andrew G. Barto, Richard S. Sutton, Christopher J. C. H. Watkins:

Sequential Decision Probelms and Neural Networks. 686-693 - David J. C. MacKay, Kenneth D. Miller:

Analysis of Linsker's Simulations of Hebbian Rules. 694-701 - Zoran Obradovic, Ian Parberry:

Analog Neural Networks of Limited Precision I: Computing with Multilinear Threshold Functions. 702-709 - Fernando J. Pineda:

Time Dependent Adaptive Neural Networks. 710-718 - Nathan Intrator:

A Neural Network for Feature Extraction. 719-726 - Pierre Baldi, Yosef Rinott, Charles Stein:

On the Distribution of the Number of Local Minima of a Random Function on a Graph. 727-732 - Anders Krogh, C. I. Thorbergsson, John A. Hertz:

A Cost Function for Internal Representations. 733-740
Part 9: Hardware Implementation
- Stephen P. DeWeerth, Carver Mead:

An Analog VLSI Model of Adaptation in the Vestibulo-Ocular Reflex. 742-749 - Christof Koch, Wyeth Bair, John G. Harris, Timothy K. Horiuchi, Andrew Hsu, Jin Luo:

Real-Time Computer Vision and Robotics Using Analog VLSI Circuits. 750-757 - Srinagesh Satyanarayana, Yannis P. Tsividis, Hans Peter Graf:

A Reconfigurable Analog VLSI Neural Network Chip. 758-768 - Alexander Moopenn, Tuan Duong, A. P. Thakoor:

Digital-Analog Hybrid Synapse Chips for Electronic Neural Networks. 769-776 - John C. Platt:

Analog Circuits for Constrained Optimization. 777-784 - Michael Brownlow, Lionel Tarassenko, Alan F. Murray, Alister Hamilton, Il Song Han, H. Martin Reekie:

Pulse-Firing Neural Chips for Hundreds of Neurons. 785-792 - Tzi-Dar Chiueh, Rodney M. Goodman:

VLSI Implementation of a High-Capacity Neural Network Associative Memory. 793-800 - Xiru Zhang, Michael McKenna, Jill P. Mesirov, David L. Waltz:

An Efficient Implementation of the Back-propagation Algorithm on the Connection Machine CM-2. 801-809 - Fernando J. Nuñez, José A. B. Fortes:

Performance of Connectionist Learning Algorithms on 2-D SIMD Processor Arrays. 810-817 - Ira Smotroff:

Dataflow Architectures: Flexible Platforms for Neural Network Simulation. 818-825
Part 10: History of Neural Networks
- Jack D. Cowan:

Neural Networks: The Early Days. 828-842

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














