


Остановите войну!
for scientists:


default search action
Yoshua Bengio
Person information

- affiliation: University of Montréal, Department of Computer Science and Operations Research, QC, Canada
- award (2018): Turing Award
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j117]David Rolnick
, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Sasha Luccioni, Tegan Maharaj, Evan D. Sherwin
, S. Karthik Mukkavilli
, Konrad P. Kording, Carla P. Gomes
, Andrew Y. Ng, Demis Hassabis, John C. Platt
, Felix Creutzig, Jennifer T. Chayes, Yoshua Bengio:
Tackling Climate Change with Machine Learning. ACM Comput. Surv. 55(2): 42:1-42:96 (2023) - [j116]Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Benchmarking Graph Neural Networks. J. Mach. Learn. Res. 24: 43:1-43:48 (2023) - [j115]Salem Lahlou, Moksh Jain, Hadi Nekoei, Victor Butoi, Paul Bertin, Jarrid Rector-Brooks, Maksym Korablyov, Yoshua Bengio:
DEUP: Direct Epistemic Uncertainty Prediction. Trans. Mach. Learn. Res. 2023 (2023) - [c428]Ramnath Kumar, Tristan Deleu, Yoshua Bengio:
The Effect of Diversity in Meta-Learning. AAAI 2023: 8396-8404 - [c427]Dianbo Liu, Alex Lamb, Xu Ji, Pascal Tikeng Notsawo Jr., Michael Mozer, Yoshua Bengio, Kenji Kawaguchi:
Adaptive Discrete Communication Bottlenecks with Dynamic Vector Quantization for Heterogeneous Representational Coarseness. AAAI 2023: 8825-8833 - [c426]Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, Siva Reddy:
Combining Parameter-efficient Modules for Task-level Generalisation. EACL 2023: 687-702 - [c425]Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Latent Bottlenecked Attentive Neural Processes. ICLR 2023 - [c424]Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Curtis Mozer, Nicolas Heess, Yoshua Bengio:
Stateful Active Facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning. ICLR 2023 - [c423]Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Everett, Dinghuai Zhang, Yoshua Bengio:
GFlowNets and variational inference. ICLR 2023 - [c422]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. ICLR 2023 - [c421]Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, Yang Yuan:
Predictive Inference with Feature Conformal Prediction. ICLR 2023 - [c420]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. ICLR 2023 - [c419]Ruixiang Zhang, Tong Che, Boris Ivanovic, Renhao Wang, Marco Pavone, Yoshua Bengio, Liam Paull:
Robust and Controllable Object-Centric Learning through Energy-based Models. ICLR 2023 - [c418]Kartik Ahuja, Divyat Mahajan, Yixin Wang, Yoshua Bengio:
Interventional Causal Representation Learning. ICML 2023: 372-407 - [c417]Alexandre Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D. Malliaros, Yoshua Bengio, David Rolnick:
FAENet: Frame Averaging Equivariant GNN for Materials Modeling. ICML 2023: 9013-9033 - [c416]Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie E. Everett, Alexandros Graikos, Yoshua Bengio:
GFlowNet-EM for Learning Compositional Latent Variable Models. ICML 2023: 13528-13549 - [c415]Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-García, Jarrid Rector-Brooks, Yoshua Bengio, Santiago Miret, Emmanuel Bengio:
Multi-Objective GFlowNets. ICML 2023: 14631-14653 - [c414]Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, Siamak Ravanbakhsh:
Equivariance with Learned Canonicalization Functions. ICML 2023: 15546-15566 - [c413]Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien, Quentin Bertrand:
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning. ICML 2023: 18171-18206 - [c412]Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin:
A theory of continuous generative flow networks. ICML 2023: 18269-18300 - [c411]Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio:
GFlowOut: Dropout with Generative Flow Networks. ICML 2023: 21715-21729 - [c410]Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin:
Learning GFlowNets From Partial Episodes For Improved Convergence And Stability. ICML 2023: 23467-23483 - [c409]Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio:
Better Training of GFlowNets with Local Credit and Incomplete Trajectories. ICML 2023: 26878-26890 - [c408]Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, Christopher Ré:
Hyena Hierarchy: Towards Larger Convolutional Language Models. ICML 2023: 28043-28078 - [c407]Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Curtis Mozer, Kenji Kawaguchi, Yoshua Bengio, Bernhard Schölkopf:
Discrete Key-Value Bottleneck. ICML 2023: 34431-34455 - [c406]Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio:
Stochastic Generative Flow Networks. UAI 2023: 1628-1638 - [c405]Yingtian Zou, Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi:
MixupE: Understanding and improving Mixup from directional derivative perspective. UAI 2023: 2597-2607 - [i468]Xu Tan, Tao Qin, Jiang Bian, Tie-Yan Liu, Yoshua Bengio:
Regeneration Learning: A Learning Paradigm for Data Generation. CoRR abs/2301.08846 (2023) - [i467]Sumukh K. Aithal, Anirudh Goyal, Alex Lamb, Yoshua Bengio, Michael Mozer:
Leveraging the Third Dimension in Contrastive Learning. CoRR abs/2301.11790 (2023) - [i466]Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin:
A theory of continuous generative flow networks. CoRR abs/2301.12594 (2023) - [i465]Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf, Yoshua Bengio:
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport. CoRR abs/2302.00482 (2023) - [i464]Moksh Jain, Tristan Deleu, Jason S. Hartford, Cheng-Hao Liu, Alex Hernández-García, Yoshua Bengio:
GFlowNets for AI-Driven Scientific Discovery. CoRR abs/2302.00615 (2023) - [i463]Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio:
Better Training of GFlowNets with Local Credit and Incomplete Trajectories. CoRR abs/2302.01687 (2023) - [i462]Lazar Atanackovic, Alexander Tong, Jason S. Hartford, Leo J. Lee, Bo Wang, Yoshua Bengio:
DynGFN: Bayesian Dynamic Causal Discovery using Generative Flow Networks. CoRR abs/2302.04178 (2023) - [i461]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. CoRR abs/2302.05793 (2023) - [i460]Xu Ji, Eric Elmoznino, George Deane, Axel Constant, Guillaume Dumas, Guillaume Lajoie, Jonathan Simon, Yoshua Bengio:
Sources of Richness and Ineffability for Phenomenally Conscious States. CoRR abs/2302.06403 (2023) - [i459]Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, Yoshua Bengio:
GFlowNet-EM for learning compositional latent variable models. CoRR abs/2302.06576 (2023) - [i458]Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio:
Stochastic Generative Flow Networks. CoRR abs/2302.09465 (2023) - [i457]Trang Nguyen, Amin Mansouri, Kanika Madan, Khuong Nguyen, Kartik Ahuja, Dianbo Liu, Yoshua Bengio:
Reusable Slotwise Mechanisms. CoRR abs/2302.10503 (2023) - [i456]Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, Christopher Ré:
Hyena Hierarchy: Towards Larger Convolutional Language Models. CoRR abs/2302.10866 (2023) - [i455]Alexandre Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D. Malliaros, Yoshua Bengio, David Rolnick:
FAENet: Frame Averaging Equivariant GNN for Materials Modeling. CoRR abs/2305.05577 (2023) - [i454]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Constant Memory Attentive Neural Processes. CoRR abs/2305.14567 (2023) - [i453]Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong, Jess Whittlestone, Jade Leung, Daniel Kokotajlo, Nahema Marchal, Markus Anderljung, Noam Kolt, Lewis Ho, Divya Siddarth, Shahar Avin, Will Hawkins, Been Kim, Iason Gabriel, Vijay Bolina, Jack Clark, Yoshua Bengio, Paul F. Christiano, Allan Dafoe:
Model evaluation for extreme risks. CoRR abs/2305.15324 (2023) - [i452]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. CoRR abs/2305.17010 (2023) - [i451]Dianbo Liu, Samuele Bolotta, He Zhu, Yoshua Bengio, Guillaume Dumas:
Attention Schema in Neural Agents. CoRR abs/2305.17375 (2023) - [i450]Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin, Yoshua Bengio:
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network. CoRR abs/2305.19366 (2023) - [i449]Ayush Chakravarthy, Trang Nguyen, Anirudh Goyal, Yoshua Bengio, Michael C. Mozer:
Spotlight Attention: Robust Object-Centric Learning With a Spatial Locality Prior. CoRR abs/2305.19550 (2023) - [i448]Oussama Boussif, Ghait Boukachab, Dan Assouline, Stefano Massaroli, Tianle Yuan, Loubna Benabbou, Yoshua Bengio:
What if We Enrich day-ahead Solar Irradiance Time Series Forecasting with Spatio-Temporal Context? CoRR abs/2306.01112 (2023) - [i447]Aniket Didolkar, Anirudh Goyal, Yoshua Bengio:
Cycle Consistency Driven Object Discovery. CoRR abs/2306.02204 (2023) - [i446]Alexandre Lacoste, Nils Lehmann, Pau Rodríguez, Evan David Sherwin, Hannah Kerner, Björn Lütjens, Jeremy Andrew Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, Mehmet Gunturkun, Gabriel Huang, David Vázquez, Dava Newman, Yoshua Bengio, Stefano Ermon, Xiao Xiang Zhu:
GEO-Bench: Toward Foundation Models for Earth Monitoring. CoRR abs/2306.03831 (2023) - [i445]Alex Hernández-García, Nikita Saxena, Moksh Jain, Cheng-Hao Liu, Yoshua Bengio:
Multi-Fidelity Active Learning with GFlowNets. CoRR abs/2306.11715 (2023) - [i444]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Constant Memory Attention Block. CoRR abs/2306.12599 (2023) - [i443]Shreshth A. Malik, Salem Lahlou, Andrew Jesson, Moksh Jain, Nikolay Malkin, Tristan Deleu, Yoshua Bengio, Yarin Gal:
BatchGFN: Generative Flow Networks for Batch Active Learning. CoRR abs/2306.15058 (2023) - [i442]Eric Nguyen, Michael Poli, Marjan Faizi, Armin W. Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton M. Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen A. Baccus, Christopher Ré:
HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution. CoRR abs/2306.15794 (2023) - [i441]Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar, Nikolay Malkin, Yoshua Bengio:
Thompson sampling for improved exploration in GFlowNets. CoRR abs/2306.17693 (2023) - [i440]Tristan Deleu, Yoshua Bengio:
Generative Flow Networks: a Markov Chain Perspective. CoRR abs/2307.01422 (2023) - [i439]Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio:
Simulation-free Schrödinger bridges via score and flow matching. CoRR abs/2307.03672 (2023) - [i438]Lewis Ho, Joslyn Barnhart, Robert Trager, Yoshua Bengio, Miles Brundage, Allison Carnegie, Rumman Chowdhury, Allan Dafoe, Gillian K. Hadfield, Margaret Levi, Duncan Snidal:
International Institutions for Advanced AI. CoRR abs/2307.04699 (2023) - [i437]Chris Chinenye Emezue, Alexandre Drouin, Tristan Deleu, Stefan Bauer, Yoshua Bengio:
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation. CoRR abs/2307.04988 (2023) - [i436]Yoshua Bengio, Prateek Gupta, Lu Li, Soham Phade, Sunil Srinivasa, Andrew Williams, Tianyu Zhang, Yang Zhang, Stephan Zheng:
AI For Global Climate Cooperation 2023 Competition Proceedings. CoRR abs/2307.06951 (2023) - [i435]Patrick Butlin, Robert Long, Eric Elmoznino, Yoshua Bengio, Jonathan Birch, Axel Constant, George Deane, Stephen M. Fleming, Chris Frith, Xu Ji, Ryota Kanai, Colin Klein, Grace Lindsay, Matthias Michel, Liad Mudrik, Megan A. K. Peters, Eric Schwitzgebel, Jonathan Simon, Rufin VanRullen:
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness. CoRR abs/2308.08708 (2023) - 2022
- [j114]Eric Larsen
, Sébastien Lachapelle
, Yoshua Bengio
, Emma Frejinger
, Simon Lacoste-Julien
, Andrea Lodi
:
Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information. INFORMS J. Comput. 34(1): 227-242 (2022) - [j113]Cheng-Hao Liu
, Maksym Korablyov, Stanislaw Jastrzebski, Pawel Wlodarczyk-Pruszynski, Yoshua Bengio, Marwin H. S. Segler
:
RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software. J. Chem. Inf. Model. 62(10): 2293-2300 (2022) - [j112]Vikas Verma
, Kenji Kawaguchi, Alex Lamb, Juho Kannala
, Arno Solin
, Yoshua Bengio, David Lopez-Paz:
Interpolation consistency training for semi-supervised learning. Neural Networks 145: 90-106 (2022) - [j111]Alex Lamb, Vikas Verma
, Kenji Kawaguchi, Alexander Matyasko, Savya Khosla, Juho Kannala
, Yoshua Bengio:
Interpolated Adversarial Training: Achieving robust neural networks without sacrificing too much accuracy. Neural Networks 154: 218-233 (2022) - [j110]Prateek Gupta, Elias Boutros Khalil, Didier Chételat, Maxime Gasse, Andrea Lodi, Yoshua Bengio, M. Pawan Kumar:
Lookback for Learning to Branch. Trans. Mach. Learn. Res. 2022 (2022) - [j109]Qicheng Lao
, Xiang Jiang
, Mohammad Havaei, Yoshua Bengio
:
A Two-Stream Continual Learning System With Variational Domain-Agnostic Feature Replay. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4466-4478 (2022) - [c404]Tianyi Zhang, Shirui Zhang, Ziwei Chen, Yoshua Bengio, Dianbo Liu:
PMFL: Partial Meta-Federated Learning for heterogeneous tasks and its applications on real-world medical records. IEEE Big Data 2022: 4453-4462 - [c403]Rim Assouel, Lluís Castrejón, Aaron C. Courville, Nicolas Ballas, Yoshua Bengio:
VIM: Variational Independent Modules for Video Prediction. CLeaR 2022: 70-89 - [c402]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Properties from mechanisms: an equivariance perspective on identifiable representation learning. ICLR 2022 - [c401]Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon:
Continuous-Time Meta-Learning with Forward Mode Differentiation. ICLR 2022 - [c400]Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Graph Neural Networks with Learnable Structural and Positional Representations. ICLR 2022 - [c399]Anirudh Goyal, Aniket Rajiv Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Curtis Mozer, Yoshua Bengio:
Coordination Among Neural Modules Through a Shared Global Workspace. ICLR 2022 - [c398]Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, Guillaume Lajoie:
Compositional Attention: Disentangling Search and Retrieval. ICLR 2022 - [c397]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. ICLR 2022 - [c396]Victor Schmidt, Alexandra Luccioni, Mélisande Teng, Tianyu Zhang, Alexia Reynaud, Sunand Raghupathi, Gautier Cosne, Adrien Juraver, Vahe Vardanyan, Alex Hernández-García, Yoshua Bengio:
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods. ICLR 2022 - [c395]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Optimization and Beyond. ICLR 2022 - [c394]Maxence Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina Rish, Blake A. Richards, Yoshua Bengio:
Towards Scaling Difference Target Propagation by Learning Backprop Targets. ICML 2022: 5968-5987 - [c393]Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio:
Biological Sequence Design with GFlowNets. ICML 2022: 9786-9801 - [c392]Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, Guillaume Lajoie:
Multi-scale Feature Learning Dynamics: Insights for Double Descent. ICML 2022: 17669-17690 - [c391]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. ICML 2022: 26412-26428 - [c390]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. ICML 2022: 26669-26692 - [c389]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Weakly Supervised Representation Learning with Sparse Perturbations. NeurIPS 2022 - [c388]Oussama Boussif, Yoshua Bengio, Loubna Benabbou, Dan Assouline:
MAgNet: Mesh Agnostic Neural PDE Solver. NeurIPS 2022 - [c387]Aniket Didolkar, Kshitij Gupta, Anirudh Goyal, Nitesh B. Gundavarapu, Alex Lamb, Nan Rosemary Ke, Yoshua Bengio:
Temporal Latent Bottleneck: Synthesis of Fast and Slow Processing Mechanisms in Sequence Learning. NeurIPS 2022 - [c386]Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, Simon Lacoste-Julien:
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints. NeurIPS 2022 - [c385]Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex M. Lamb, Kenji Kawaguchi, Xin Li, Romain Laroche, Yoshua Bengio, Remi Tachet des Combes:
Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning. NeurIPS 2022 - [c384]Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, Yoshua Bengio:
Trajectory balance: Improved credit assignment in GFlowNets. NeurIPS 2022 - [c383]Sarthak Mittal, Yoshua Bengio, Guillaume Lajoie:
Is a Modular Architecture Enough? NeurIPS 2022 - [c382]Martin Weiss, Nasim Rahaman, Francesco Locatello, Chris Pal, Yoshua Bengio, Bernhard Schölkopf, Li Erran Li, Nicolas Ballas:
Neural Attentive Circuits. NeurIPS 2022 - [c381]Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:
Bayesian structure learning with generative flow networks. UAI 2022: 518-528 - [c380]Akram Erraqabi, Marlos C. Machado
, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal abstractions-augmented temporally contrastive learning: An alternative to the Laplacian in RL. UAI 2022: 641-651 - [i434]Ramnath Kumar, Tristan Deleu, Yoshua Bengio:
The Effect of Diversity in Meta-Learning. CoRR abs/2201.11775 (2022) - [i433]Ramnath Kumar, Tristan Deleu, Yoshua Bengio:
Rethinking Learning Dynamics in RL using Adversarial Networks. CoRR abs/2201.11783 (2022) - [i432]Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, Yoshua Bengio:
Trajectory Balance: Improved Credit Assignment in GFlowNets. CoRR abs/2201.13259 (2022) - [i431]Maxence Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina Rish, Blake A. Richards, Yoshua Bengio:
Towards Scaling Difference Target Propagation by Learning Backprop Targets. CoRR abs/2201.13415 (2022) - [i430]Dianbo Liu, Alex Lamb, Xu Ji, Pascal Notsawo, Michael Mozer, Yoshua Bengio, Kenji Kawaguchi:
Adaptive Discrete Communication Bottlenecks with Dynamic Vector Quantization. CoRR abs/2202.01334 (2022) - [i429]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. CoRR abs/2202.01361 (2022) - [i428]Paul Bertin, Jarrid Rector-Brooks, Deepak Sharma, Thomas Gaudelet, Andrew Anighoro, Torsten Gross, Francisco Martinez-Pena, Eileen L. Tang, Suraj M. S, Cristian Regep, Jeremy B. R. Hayter, Maksym Korablyov, Nicholas Valiante, Almer van der Sloot, Mike Tyers, Charles Roberts, Michael M. Bronstein, Luke L. Lairson, Jake P. Taylor-King, Yoshua Bengio:
RECOVER: sequential model optimization platform for combination drug repurposing identifies novel synergistic compounds in vitro. CoRR abs/2202.04202 (2022) - [i427]Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:
Bayesian Structure Learning with Generative Flow Networks. CoRR abs/2202.13903 (2022) - [i426]Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon:
Continuous-Time Meta-Learning with Forward Mode Differentiation. CoRR abs/2203.01443 (2022) - [i425]François St-Hilaire, Dung Do Vu, Antoine Frau, Nathan Burns, Farid Faraji, Joseph Potochny, Stephane Robert, Arnaud Roussel, Selene Zheng, Taylor Glazier, Junfel Vincent Romano, Robert Belfer, Muhammad Shayan, Ariella Smofsky, Tommy Delarosbil, Seulmin Ahn, Simon Eden-Walker, Kritika Sony, Ansona Onyi Ching, Sabina Elkins, Anush Stepanyan, Adela Matajova, Victor Chen, Hossein Sahraei, Robert Larson, Nadia Markova, Andrew Barkett, Laurent Charlin, Yoshua Bengio, Iulian Vlad Serban, Ekaterina Kochmar:
A New Era: Intelligent Tutoring Systems Will Transform Online Learning for Millions. CoRR abs/2203.03724 (2022) - [i424]Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour
, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio:
Biological Sequence Design with GFlowNets. CoRR abs/2203.04115 (2022) - [i423]Akram Erraqabi, Marlos C. Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL. CoRR abs/2203.11369 (2022) - [i422]Yoshua Bengio, Prateek Gupta, Dylan R. Radovic, Maarten Scholl, Andrew Williams, Christian Schröder de Witt, Tianyu Zhang, Yang Zhang:
(Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach for Climate Finance and Risk Assessment. CoRR abs/2205.00666 (2022) - [i421]Sanghyun Yoo, Inchul Song, Yoshua Bengio:
A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech Recognition. CoRR abs/2205.03027 (2022) - [i420]Mike He Zhu, Léna Néhale Ezzine, Dianbo Liu, Yoshua Bengio:
FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for Federated Learning on Non-IID Data. CoRR abs/2205.09305 (2022) - [i419]Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Mozer, Nicolas Heess, Yoshua Bengio:
Coordinating Policies Among Multiple Agents via an Intelligent Communication Channel. CoRR abs/2205.10607 (2022) - [i418]Sharut Gupta, Kartik Ahuja, Mohammad Havaei, Niladri Chatterjee, Yoshua Bengio:
FL Games: A federated learning framework for distribution shifts. CoRR abs/2205.11101 (2022) - [i417]Aniket Didolkar, Kshitij Gupta, Anirudh Goyal, Alex Lamb, Nan Rosemary Ke, Yoshua Bengio:
Temporal Latent Bottleneck: Synthesis of Fast and Slow Processing Mechanisms in Sequence Learning. CoRR abs/2205.14794 (2022) - [i416]Benjamin Scellier, Siddhartha Mishra, Yoshua Bengio, Yann Ollivier:
Agnostic Physics-Driven Deep Learning. CoRR abs/2205.15021 (2022) - [i415]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Weakly Supervised Representation Learning with Sparse Perturbations. CoRR abs/2206.01101 (2022) - [i414]Sarthak Mittal, Yoshua Bengio, Guillaume Lajoie:
Is a Modular Archit