


default search action
Neural Networks: Tricks of the Trade@NIPS 1996
- Genevieve B. Orr, Klaus-Robert Müller

:
Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science 1524, Springer 1998, ISBN 3-540-65311-2
Introduction
- Genevieve B. Orr, Klaus-Robert Müller:

Introduction. 1-5
Speeding Learning
- Genevieve B. Orr, Klaus-Robert Müller:

Speeding Learning: Preface. 7-8 - Yann LeCun, Léon Bottou, Genevieve B. Orr, Klaus-Robert Müller

:
Effiicient BackProp. 9-50
Regularization Techniques to Improve Generalization
- Genevieve B. Orr, Klaus-Robert Müller:

Regularization Techniques to Improve Generalization: Preface. 51-54 - Lutz Prechelt

:
Early Stopping-But When? 55-69 - Thorsteinn S. Rögnvaldsson:

A Simple Trick for Estimating the Weight Decay Parameter. 71-92 - Tony Plate:

Controling the Hyperparameter Search in MacKay's Bayesian Neural Network Framework. 93-112 - Jan Larsen, Claus Svarer, Lars Nonboe Andersen, Lars Kai Hansen:

Adaptive Regularization in Neural Network Modeling. 113-132 - David Horn, Ury Naftaly, Nathan Intrator:

Large Ensemble Averaging. 133-139
Improving Network Models and Algorithmic Tricks
- Genevieve B. Orr, Klaus-Robert Müller:

Improving Network Models and Algorithmic Tricks: Preface. 141-144 - Gary William Flake:

Square Unit Augmented, Radially Extended, Multilayer Perceptrons. 145-163 - Rich Caruana:

A Dozen Tricks with Multitask Learning. 165-191 - Patrick van der Smagt

, Gerd Hirzinger:
Solving the Ill-Conditioning in Neural Network Learning. 193-206 - Nicol N. Schraudolph:

Centering Neural Network Gradient Factors. 207-226 - Tony Plate:

Avoiding Roundoff Error in Backpropagating Derivatives. 227-233
Representing and Incorporating Prior Knowledge in Neural Network Training
- Genevieve B. Orr, Klaus-Robert Müller:

Representing and Incorporating Prior Knowledge in Neural Network Training: Preface. 235-238 - Patrice Y. Simard, Yann LeCun, John S. Denker, Bernard Victorri:

Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation. 239-27 - Larry S. Yaeger, Brandyn J. Webb, Richard F. Lyon:

Combining Neural Networks and Context-Driven Search for On-Line, Printed Handwriting Recognition in the Newton. 275-298 - Steve Lawrence, Ian Burns, Andrew D. Back, Ah Chung Tsoi, C. Lee Giles:

Neural Network Classification and Prior Class Probabilities. 299-313 - Jürgen Fritsch, Michael Finke:

applying Divide and Conquer to Large Scale Pattern Recognition Tasks. 315-342
Tricks for Time Series
- Genevieve B. Orr, Klaus-Robert Müller:

Tricks for Time Series: Preface. 343-346 - John E. Moody:

Forecasting the Economy with Neural Nets: A Survey of Challenges and Solutions. 347-371 - Ralph Neuneier, Hans-Georg Zimmermann:

How to Train Neural Networks. 373-423

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














