


default search action
PKDD / ECML 2022: Grenoble, France - Part I
- Nuria Oliver

, Fernando Pérez-Cruz
, Stefan Kramer, Jesse Read
, José Antonio Lozano
:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part I. Lecture Notes in Computer Science 12975, Springer 2021, ISBN 978-3-030-86485-9
Clustering and Dimensionality Reduction
- Xu Feng

, Wenjian Yu, Yuyang Xie:
Pass-Efficient Randomized SVD with Boosted Accuracy. 3-20 - Hussein El Amouri

, Thomas Andrew Lampert, Pierre Gançarski, Clément Mallet:
CDPS: Constrained DTW-Preserving Shapelets. 21-37 - Christopher M. A. Bonenberger

, Wolfgang Ertel, Markus Schneider
, Friedhelm Schwenker
:
Structured Nonlinear Discriminant Analysis. 38-54 - Juncheng Liu, Yiwei Wang

, Bryan Hooi, Renchi Yang
, Xiaokui Xiao:
LSCALE: Latent Space Clustering-Based Active Learning for Node Classification. 55-70 - Jarne Verhaeghe

, M. Jeroen Van Der Donckt
, Femke Ongenae
, Sofie Van Hoecke
:
Powershap: A Power-Full Shapley Feature Selection Method. 71-87 - Zheng Chen, Lingwei Zhu, Ziwei Yang

, Takashi Matsubara:
Automated Cancer Subtyping via Vector Quantization Mutual Information Maximization. 88-103 - Fynn Bachmann

, Philipp Hennig
, Dmitry Kobak:
Wasserstein t-SNE. 104-120 - Haruya Ishizuka, Daichi Mochihashi:

Nonparametric Bayesian Deep Visualization. 121-137 - Geping Yang

, Hongzhang Lv, Yiyang Yang, Zhiguo Gong, Xiang Chen, Zhifeng Hao:
FastDEC: Clustering by Fast Dominance Estimation. 138-156 - Azqa Nadeem

, Sicco Verwer:
SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting. 157-173 - Nguyen-Viet-Dung Nghiem, Christel Vrain, Thi-Bich-Hanh Dao:

Knowledge Integration in Deep Clustering. 174-190
Anomaly Detection
- Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng:

ARES: Locally Adaptive Reconstruction-Based Anomaly Scoring. 193-208 - Jan-Philipp Schulze

, Philip Sperl
, Ana Radutoiu
, Carla Sagebiel, Konstantin Böttinger
:
R2-AD2: Detecting Anomalies by Analysing the Raw Gradient. 209-224 - Tianjin Huang

, Yulong Pei
, Vlado Menkovski, Mykola Pechenizkiy
:
Hop-Count Based Self-supervised Anomaly Detection on Attributed Networks. 225-241 - Bhumika

, Debasis Das
:
Deep Learning Based Urban Anomaly Prediction from Spatiotemporal Data. 242-257 - Lucas Cazzonelli

, Cedric Kulbach
:
Detecting Anomalies with Autoencoders on Data Streams. 258-274 - Shin Ando, Ayaka Yamamoto:

Anomaly Detection via Few-Shot Learning on Normality. 275-290
Interpretability and Explainability
- Yuki Oba, Taro Tezuka

, Masaru Sanuki
, Yukiko Wagatsuma
:
Interpretations of Predictive Models for Lifestyle-related Diseases at Multiple Time Intervals. 293-308 - Charles Condevaux, Sébastien Harispe

, Stéphane Mussard:
Fair and Efficient Alternatives to Shapley-based Attribution Methods. 309-324 - Gianluigi Lopardo

, Damien Garreau, Frédéric Precioso, Greger Ottosson:
SMACE: A New Method for the Interpretability of Composite Decision Systems. 325-339 - Gregory Scafarto

, Nicolas Posocco
, Antoine Bonnefoy
:
Calibrate to Interpret. 340-355 - Riccardo Massidda

, Davide Bacciu
:
Knowledge-Driven Interpretation of Convolutional Neural Networks. 356-371 - Housam Khalifa Bashier Babiker, Mi-Young Kim

, Randy Goebel:
Neural Networks with Feature Attribution and Contrastive Explanations. 372-388 - Amr Alkhatib

, Henrik Boström
, Michalis Vazirgiannis
:
Explaining Predictions by Characteristic Rules. 389-403 - Panagiotis Symeonidis

, Lidija Kirjackaja, Markus Zanker
:
Session-Based Recommendation Along with the Session Style of Explanation. 404-420 - Dawid Rymarczyk

, Adam Pardyl
, Jaroslaw Kraus
, Aneta Kaczynska
, Marek Skomorowski
, Bartosz Zielinski
:
ProtoMIL: Multiple Instance Learning with Prototypical Parts for Whole-Slide Image Classification. 421-436 - Victor Guyomard, Françoise Fessant, Thomas Guyet

, Tassadit Bouadi
, Alexandre Termier:
VCNet: A Self-explaining Model for Realistic Counterfactual Generation. 437-453
Ranking and Recommender Systems
- Carola Gajek

, Alexander Schiendorfer
, Wolfgang Reif
:
A Recommendation System for CAD Assembly Modeling Based on Graph Neural Networks. 457-473 - Yifan Wang, Yifang Qin, Yu Han, Mingyang Yin, Jingren Zhou, Hongxia Yang, Ming Zhang

:
AD-AUG: Adversarial Data Augmentation for Counterfactual Recommendation. 474-490 - Yabo Chu

, Enneng Yang
, Qiang Liu
, Yuting Liu
, Linying Jiang
, Guibing Guo
:
Bi-directional Contrastive Distillation for Multi-behavior Recommendation. 491-507 - Yisong Yu, Beihong Jin, Jiageng Song, Beibei Li, Yiyuan Zheng, Wei Zhuo:

Improving Micro-video Recommendation by Controlling Position Bias. 508-523 - Ming He, Xinlei Hu, Changshu Li, Xin Chen, Jiwen Wang:

Mitigating Confounding Bias for Recommendation via Counterfactual Inference. 524-540 - Srinivas Virinchi, Anoop Saladi, Abhirup Mondal:

Recommending Related Products Using Graph Neural Networks in Directed Graphs. 541-557 - Peng Yi, Xiongcai Cai, Ziteng Li:

A U-Shaped Hierarchical Recommender by Multi-resolution Collaborative Signal Modeling. 558-573 - Ting-Ting Su, Zhenyu He, Man-Sheng Chen, Chang-Dong Wang:

Basket Booster for Prototype-based Contrastive Learning in Next Basket Recommendation. 574-589 - Mengyuan Jing, Yanmin Zhu, Tianzi Zang, Jiadi Yu, Feilong Tang:

Graph Contrastive Learning with Adaptive Augmentation for Recommendation. 590-605 - Shicheng Wang, Shu Guo, Lihong Wang, Tingwen Liu

, Hongbo Xu:
Multi-interest Extraction Joint with Contrastive Learning for News Recommendation. 606-621
Transfer and Multitask Learning
- Lukasz Maziarka

, Aleksandra Nowak
, Maciej Wolczyk
, Andrzej Bedychaj
:
On the Relationship Between Disentanglement and Multi-task Learning. 625-641 - Yuntao Du

, Hongtao Luo, Haiyang Yang, Juan Jiang, Chongjun Wang:
InCo: Intermediate Prototype Contrast for Unsupervised Domain Adaptation. 642-658 - Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:

Fast and Accurate Importance Weighting for Correcting Sample Bias. 659-674 - Yunfei Teng, Anna Choromanska, Murray Campbell, Songtao Lu, Parikshit Ram, Lior Horesh:

Overcoming Catastrophic Forgetting via Direction-Constrained Optimization. 675-692 - Shibal Ibrahim, Natalia Ponomareva, Rahul Mazumder:

Newer is Not Always Better: Rethinking Transferability Metrics, Their Peculiarities, Stability and Performance. 693-709 - Arjun Roy, Eirini Ntoutsi:

Learning to Teach Fairness-Aware Deep Multi-task Learning. 710-726

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














