


default search action
PKDD / ECML 2025: Porto, Portugal - Part II
- Rita P. Ribeiro

, Bernhard Pfahringer
, Nathalie Japkowicz
, Pedro Larrañaga
, Alípio M. Jorge
, Carlos Soares
, Pedro H. Abreu
, João Gama
:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part II. Lecture Notes in Computer Science 16014, Springer 2026, ISBN 978-3-032-05980-2
Data Challenges
- Runxue Bao, Quanchao Lu, Yanfu Zhang:

Safe Screening Rules for Group SLOPE. 3-19 - Denis Huseljic, Marek Herde, Lukas Rauch, Paul Hahn, Zhixin Huang, Daniel Kottke, Stephan Vogt, Bernhard Sick:

Efficient Bayesian Updates for Deep Active Learning via Laplace Approximations. 20-35 - Frederik Boe Hüttel, Christoffer Riis, Filipe Rodrigues, Francisco C. Pereira:

Bayesian Active Learning for Censored Regression. 36-51 - Hideaki Ishibashi, Kota Matsui, Kentaro Kutsukake, Hideitsu Hino:

An (ε ,δ )-Accurate Level Set Estimation with a Stopping Criterion. 52-69 - Yannick Rudolph, Kai Neubauer, Ulf Brefeld:

Self-improvement for Computerized Adaptive Testing. 70-86 - Yang Xu, Kai Ming Ting:

Voronoi Diagram Encoded Hashing. 87-103 - Xiaohui Yu, Qiao Yan:

Adaptive Multi-space Defense Framework Against Adversarial Attacks. 104-118 - Pawel Zyblewski

, Szymon Wojciechowski
:
How to RETIRE Tabular Data in Favor of Discrete Digital Signal Representation. 119-135
Diffusion Models
- Rushan Geng, Ge Chen, Cuicui Luo:

Diffusion Model with Selective Attention for Temporal Knowledge Graph Reasoning. 139-155 - Rongshen He, Abubakar Zakari, Qinru Yang, Jiaqi Luo, Changsheng Ma:

Topology-Aware Hierarchical Graph Diffusion Model for Molecular Graph Generation. 156-172 - Chi Hong, Jiyue Huang, Robert Birke, Dick H. J. Epema, Stefanie Roos, Lydia Y. Chen:

Single-Fold Distillation for Diffusion Models. 173-189 - Dibyanshu Kumar

, Philipp Väth
, Magda Gregorová:
Loss Functions in Diffusion Models: A Comparative Study. 190-205 - Philipp Väth

, Dibyanshu Kumar
, Benjamin Paassen, Magda Gregorová:
Diffusion Classifier Guidance for Non-robust Classifiers. 206-221 - Alexandre Verine, Mehdi Inane, Florian Le Bronnec, Benjamin Négrevergne, Yann Chevaleyre:

Improving Discriminator Guidance in Diffusion Models. 222-238 - Wendong Zhang, Haoqi Chen, Song Yu:

JKDM: A Joint Structural and Semantic Diffusion-Generated Knowledge Completion Model. 239-255
Ensemble Learning
- Grigor Bezirganyan, Sana Sellami, Laure Berti-Équille, Sébastien Fournier:

EM-SEC: Efficient Multi-head Set-Valued Evidential Classification. 259-277 - Hefei Liang, Jiaqi Liu, Bin Guo, Zhiwen Yu:

A Complementarity-Enhanced Mixture of Human-AI Teams for Decision-Making. 278-293 - Kelin Liu, Yao Zhou, Bin Liu, Hanjing Su, Shouzhi Chen:

MEAN: Multi-Expert Adaptive Network For Customer Lifetime Value Prediction. 294-309 - Denis Lukovnikov, Asja Fischer:

Enabling ControlNet to follow Localized Descriptions Using Cross-Attention Control. 310-327
Federated Learning
- Milena Angelova, Veselka Boeva, Shahrooz Abghari, Selim Ickin, Xiaoyu Lan:

FedCluLearn: Federated Continual Learning Using Stream Micro-cluster Indexing Scheme. 331-349 - Lingxiao Kong, Jiahui Jiang, Haozhao Wang, Lei Wu, Ruixuan Li:

FedRNL: Federated Rationalization with Soft Parameter Sharing. 350-366 - Fan Liu, Siqi Lai, Yansong Ning, Hao Liu:

Bkd-FedGNN: A Benchmark for Classification Backdoor Attacks on Federated Graph Neural Network. 367-383 - Zhi Wen Soi, Chenrui Fan, Aditya Shankar, Abel Malan, Lydia Y. Chen:

Federated Time Series Generation on Feature and Temporally Misaligned Data. 384-399
Graph Neural Networks
- Clemens Damke, Eyke Hüllermeier:

Distribution Matching for Graph Quantification Under Structural Covariate Shift. 403-419 - Yaniv Galron, Fabrizio Frasca, Haggai Maron, Eran Treister, Moshe Eliasof:

Understanding and Improving Laplacian Positional Encodings for Temporal GNNs. 420-437 - Jakub Peleska, Gustav Sír:

ReDeLEx: A Framework for Relational Deep Learning Exploration. 438-456 - Taoyang Qin, Ke-Jia Chen, Zheng Liu:

Localized Heat Kernel for Graph Neural Networks. 457-473 - Takuto Takahashi, Itsuki Nakayama, Takahiro Mitani, Ryosuke Kikuchi, Yuya Sasaki, Makoto Onizuka:

Graph Neural Network Leveraging Higher-Order Class Label Connectivity for Heterophilous Graphs. 474-491 - Karan Vombatkere, Theodoros Lappas, Evimaria Terzi:

A QUBO Framework for Team Formation. 492-510 - Ziyu Wang:

Enhancing Graph Transformers with SNNs and Mutual Information. 511-526 - Donghang Wu, Lian Shen, Changzhi Jiang, Yanhao Li, Xiangrong Liu:

PipeQS: Pipeline-Based Adaptive Quantization and Staleness-Aware Distributed GNN Training System. 527-543

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














