


default search action
RecSys 2008: Lausanne, Switzerland
- Pearl Pu, Derek G. Bridge, Bamshad Mobasher, Francesco Ricci:

Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008. ACM 2008, ISBN 978-1-60558-093-7 - Andrei Z. Broder:

Computational advertising and recommender systems. 1-2
Recommendation algorithms
- Shengchao Ding, Shiwan Zhao

, Quan Yuan, Xiatian Zhang, Rongyao Fu, Lawrence D. Bergman:
Boosting collaborative filtering based on statistical prediction errors. 3-10 - Yoon-Joo Park, Alexander Tuzhilin:

The long tail of recommender systems and how to leverage it. 11-18 - Asela Gunawardana, Christopher Meek:

Tied boltzmann machines for cold start recommendations. 19-26 - Rossano Schifanella

, André Panisson
, Cristina Gena
, Giancarlo Ruffo
:
MobHinter: epidemic collaborative filtering and self-organization in mobile ad-hoc networks. 27-34 - Guy Shani

, David Maxwell Chickering, Christopher Meek:
Mining recommendations from the web. 35-42
Social networks and recommenders
- Panagiotis Symeonidis

, Alexandros Nanopoulos, Yannis Manolopoulos:
Tag recommendations based on tensor dimensionality reduction. 43-50 - Valentina Zanardi, Licia Capra:

Social ranking: uncovering relevant content using tag-based recommender systems. 51-58 - Werner Geyer, Casey Dugan, David R. Millen, Michael J. Muller, Jill Freyne:

Recommending topics for self-descriptions in online user profiles. 59-66 - Nikhil Garg, Ingmar Weber

:
Personalized, interactive tag recommendation for flickr. 67-74
User studies
- Li Chen, Pearl Pu:

A cross-cultural user evaluation of product recommender interfaces. 75-82 - Songhua Xu, Hao Jiang, Francis C. M. Lau:

Personalized online document, image and video recommendation via commodity eye-tracking. 83-90 - Veronica Maidel, Peretz Shoval, Bracha Shapira

, Meirav Taieb-Maimon
:
Evaluation of an ontology-content based filtering method for a personalized newspaper. 91-98
Conversational systems
- Hu Wu, Yongji Wang, Xiang Cheng:

Incremental probabilistic latent semantic analysis for automatic question recommendation. 99-106 - Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang

, Edward Y. Chang:
Pfp: parallel fp-growth for query recommendation. 107-114 - Tarik Hadzic, Barry O'Sullivan

:
Critique graphs for catalogue navigation. 115-122
Recommender challenges
- Mi Zhang, Neil Hurley

:
Avoiding monotony: improving the diversity of recommendation lists. 123-130 - Hilmi Yildirim, Mukkai S. Krishnamoorthy:

A random walk method for alleviating the sparsity problem in collaborative filtering. 131-138 - Markus Zanker

:
A collaborative constraint-based meta-level recommender. 139-146 - Paul Resnick, Rahul Sami:

The information cost of manipulation-resistance in recommender systems. 147-154 - Kenneth Bryan

, Michael P. O'Mahony
, Padraig Cunningham
:
Unsupervised retrieval of attack profiles in collaborative recommender systems. 155-162
Posters
- Marco Degemmis

, Pasquale Lops
, Giovanni Semeraro
, Pierpaolo Basile
:
Integrating tags in a semantic content-based recommender. 163-170 - Alexander Brodsky, Sylvia Morgan Henshaw, Jon Whittle:

CARD: a decision-guidance framework and application for recommending composite alternatives. 171-178 - Òscar Celma, Perfecto Herrera:

A new approach to evaluating novel recommendations. 179-186 - Sara Drenner, Shilad Sen, Loren G. Terveen:

Crafting the initial user experience to achieve community goals. 187-194 - Martijn Kagie, Michiel C. van Wezel, Patrick J. F. Groenen

:
Choosing attribute weights for item dissimilarity using clikstream data with an application to a product catalog map. 195-202 - Georgia Koutrika, Robert Ikeda, Benjamin Bercovitz, Hector Garcia-Molina:

Flexible recommendations over rich data. 203-210 - Vinod Krishnan, Pradeep Kumar Narayanashetty, Mukesh Nathan, Richard T. Davies, Joseph A. Konstan

:
Who predicts better?: results from an online study comparing humans and an online recommender system. 211-218 - Kleanthi Lakiotaki, Stelios Tsafarakis

, Nikolaos F. Matsatsinis:
UTA-Rec: a recommender system based on multiple criteria analysis. 219-226 - Neal Lathia, Stephen Hailes, Licia Capra:

kNN CF: a temporal social network. 227-234 - Nathan Oostendorp, Paul Resnick:

Three recommender approaches to interface controls reduction. 235-242 - Juan A. Recio-García, Belén Díaz-Agudo

, Pedro A. González-Calero:
Prototyping recommender systems in jcolibri. 243-250 - Steffen Rendle, Lars Schmidt-Thieme

:
Online-updating regularized kernel matrix factorization models for large-scale recommender systems. 251-258 - Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher

, Robin D. Burke
:
Personalized recommendation in social tagging systems using hierarchical clustering. 259-266 - Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk:

Matrix factorization and neighbor based algorithms for the netflix prize problem. 267-274 - Markus Weimer, Alexandros Karatzoglou, Alexander J. Smola:

Adaptive collaborative filtering. 275-282
Short papers
- Arun Kumar Agrahri, Divya Anand Thattandi Manickam, John Riedl:

Can people collaborate to improve the relevance of search results? 283-286 - Toine Bogers, Antal van den Bosch

:
Recommending scientific articles using citeulike. 287-290 - M. Benjamin Dias, Dominique Locher, Ming Li, Wael El-Deredy

, Paulo J. G. Lisboa:
The value of personalised recommender systems to e-business: a case study. 291-294
Doctoral symposium
- Linas Baltrunas:

Exploiting contextual information in recommender systems. 295-298 - Marcos Aurélio Domingues

:
An independent platform for the monitoring, analysis and adaptation of web sites. 299-302 - Hendrik Drachsler, Hans G. K. Hummel, Rob Koper:

Navigation support for learners in informal learning environments. 303-306 - YoungOk Kwon:

Improving top-n recommendation techniques using rating variance. 307-310 - Danielle Hyunsook Lee

:
PITTCULT: trust-based cultural event recommender. 311-314 - Leobino Nascimento Sampaio:

A network performance recommendation process for advanced internet applications users. 315-318 - Olga C. Santos

:
A recommender system to provide adaptive and inclusive standard-based support along the elearning life cycle. 319-322 - Erich Christian Teppan:

Implications of psychological phenomenons for recommender systems. 323-326 - Akhmed Umyarov:

Leveraging aggregate ratings for improving predictive performance of recommender systems. 327-330
Tutorials
- Robin D. Burke:

Robust recommender systems. 331-332 - Yehuda Koren:

Tutorial on recent progress in collaborative filtering. 333-334 - Gediminas Adomavicius, Alexander Tuzhilin

:
Context-aware recommender systems. 335-336

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














