


default search action
11. WSOM 2016: Houston, Texas, USA
- Erzsébet Merényi, Michael J. Mendenhall, Patrick O'Driscoll:

Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, January 6-8, 2016. Advances in Intelligent Systems and Computing 428, Springer 2016, ISBN 978-3-319-28517-7
Self-Organizing Map Learning, Visualization, and Quality Assessment
- Marie Cottrell, Madalina Olteanu, Fabrice Rossi

, Nathalie Villa-Vialaneix:
Theoretical and Applied Aspects of the Self-Organizing Maps. 3-26 - Jérôme Mariette, Nathalie Villa-Vialaneix:

Aggregating Self-Organizing Maps with Topology Preservation. 27-37 - Alfred Ultsch, Martin Behnisch

, Jörn Lötsch
:
ESOM Visualizations for Quality Assessment in Clustering. 39-48 - Lutz Hamel:

SOM Quality Measures: An Efficient Statistical Approach. 49-59 - Denny, William Gozali, Ruli Manurung:

SOM Training Optimization Using Triangle Inequality. 61-71 - Madalina Olteanu, Nathalie Villa-Vialaneix:

Sparse Online Self-Organizing Maps for Large Relational Data. 73-82
Clustering and Time Series Analysis with Self-Organizing Maps and Neural Gas
- Yaser Moazzen

, Kadim Tasdemir:
A Neural Gas Based Approximate Spectral Clustering Ensemble. 85-93 - Jean-Charles Lamirel:

Reliable Clustering Quality Estimation from Low to High Dimensional Data. 95-105 - Jorge R. Vergara

, Pablo A. Estévez
, Álvaro Serrano:
Segment Growing Neural Gas for Nonlinear Time Series Analysis. 107-117 - Rigoberto Fonseca-Delgado

, Pilar Gómez-Gil
:
Modeling Diversity in Ensembles for Time-Series Prediction Based on Self-Organizing Maps. 119-128
Applications in Control, Planning, and Dimensionality Reduction, and Hardware for Self-Organizing Maps
- Paulo Henrique Muniz Ferreira, Aluízio Fausto Ribeiro Araújo:

Modular Self-Organizing Control for Linear and Nonlinear Systems. 131-141 - Jan Faigl

:
On Self-Organizing Map and Rapidly-Exploring Random Graph in Multi-Goal Planning. 143-153 - Oliver Kramer:

Dimensionality Reduction Hybridizations with Multi-dimensional Scaling. 155-163 - Mehdi Abadi, Slavisa Jovanovic

, Khaled Ben Khalifa
, Serge Weber
, Mohamed Hédi Bedoui
:
A Scalable Flexible SOM NoC-Based Hardware Architecture. 165-175 - Humberto I. Fontinele, Davyd B. Melo, Guilherme A. Barreto

:
Local Models for Learning Inverse Kinematics of Redundant Robots: A Performance Comparison. 177-187
Self-Organizing Maps in Neuroscience and Medical Applications
- Risto Miikkulainen:

Using SOMs to Gain Insight into Human Language Processing. 191 - Nahed Alowadi

, Yuan Shen, Peter Tiño
:
Prototype-Based Spatio-Temporal Probabilistic Modelling of fMRI Data. 193-203 - Deborah Mudali, Michael Biehl

, Klaus Leonard Leenders, Jos B. T. M. Roerdink:
LVQ and SVM Classification of FDG-PET Brain Data. 205-215 - Axel Wismüller, Anas Z. Abidin

, Adora M. DSouza, Mahesh B. Nagarajan:
Mutual Connectivity Analysis (MCA) for Nonlinear Functional Connectivity Network Recovery in the Human Brain Using Convergent Cross-Mapping and Non-metric Clustering. 217-226 - Benjamin D. Kramer, Dylan P. Losey, Marcia K. O'Malley:

SOM and LVQ Classification of Endovascular Surgeons Using Motion-Based Metrics. 227-237 - Masaaki Ohkita, Heizo Tokutaka, Nobuhiko Kasezawa, Eikou Gonda:

Visualization and Practical Use of Clinical Survey Medical Examination Results. 239-249 - Patrick O'Driscoll, Erzsébet Merényi, Christof Karmonik, Robert G. Grossman:

The Effect of SOM Size and Similarity Measure on Identification of Functional and Anatomical Regions in fMRI Data. 251-263
Learning Vector Quantization Theories and Applications I
- Pablo A. Estévez

:
Big Data Era Challenges and Opportunities in Astronomy - How SOM/LVQ and Related Learning Methods Can Contribute? 267 - Thomas Villmann, Marika Kaden, Andrea Bohnsack, J.-M. Villmann, T. Drogies, Sascha Saralajew, Barbara Hammer

:
Self-Adjusting Reject Options in Prototype Based Classification. 269-279 - David Nebel, Thomas Villmann:

Optimization of Statistical Evaluation Measures for Classification by Median Learning Vector Quantization. 281-291 - Matthias Gay, Marika Kaden, Michael Biehl

, Alexander Lampe, Thomas Villmann:
Complex Variants of GLVQ Based on Wirtinger's Calculus. 293-303 - David Nova, Pablo A. Estévez

:
A Study on GMLVQ Convex and Non-convex Regularization. 305-314
Learning Vector Quantization Theories and Applications II
- Friedrich Melchert, Udo Seiffert

, Michael Biehl
:
Functional Representation of Prototypes in LVQ and Relevance Learning. 317-327 - Ernest Mwebaze, Michael Biehl

:
Prototype-Based Classification for Image Analysis and Its Application to Crop Disease Diagnosis. 329-339 - Kerstin Bunte

, Marika Kaden, Frank-Michael Schleif:
Low-Rank Kernel Space Representations in Prototype Learning. 341-353 - Jonathon Climer, Michael J. Mendenhall:

Dynamic Prototype Addition in Generalized Learning Vector Quantization. 355-368

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














