default search action
Marika Kaden
Person information
- affiliation: University of Applied Sciences Mittweida, Mittweida, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c52]Julius Voigt, Sascha Saralajew, Marika Kaden, Katrin Sophie Bohnsack, Lynn V. Reuss, Thomas Villmann:
Biologically-Informed Shallow Classification Learning Integrating Pathway Knowledge. BIOSTEC (1) 2024: 357-367 - 2023
- [j19]Katrin Sophie Bohnsack, Julius Voigt, Marika Kaden, Florian Heinke, Thomas Villmann:
Multi-proximity based embedding scheme for learning vector quantization-based classification of biochemical structured data. Neurocomputing 554: 126632 (2023) - [j18]Katrin Sophie Bohnsack, Marika Kaden, Julia Abel, Thomas Villmann:
Alignment-Free Sequence Comparison: A Systematic Survey From a Machine Learning Perspective. IEEE ACM Trans. Comput. Biol. Bioinform. 20(1): 119-135 (2023) - [c51]Katrin Sophie Bohnsack, Alexander Engelsberger, Marika Kaden, Thomas Villmann:
Efficient Representation of Biochemical Structures for Supervised and Unsupervised Machine Learning Models Using Multi-Sensoric Embeddings. BIOINFORMATICS 2023: 59-69 - [c50]Thomas Villmann, Ronny Schubert, Marika Kaden:
Variants of Neural Gas for Regression Learning. ESANN 2023 - [c49]Ronny Schubert, Lynn V. Reuss, Daniel Staps, Marika Kaden, Thomas Villmann, Robert Hasler, Robin Herz, Till Tiemann, Wolfram Richardt:
A White-Box Workflow for the Prediction of Food Content From Near-Infrared Data Based on Fourier-Transformation. WHISPERS 2023: 1-5 - [c48]Daniel Staps, Marika Kaden, Jan Auth, Florian Zaussinger, Thomas Villmann:
Compression of Particle Images for Inspection of Microgravity Experiments by Means of a Symmetric Structural Auto-Encoder. WHISPERS 2023: 1-5 - 2022
- [j17]Jensun Ravichandran, Marika Kaden, Thomas Villmann:
Variants of recurrent learning vector quantization. Neurocomputing 502: 27-36 (2022) - [j16]Marika Kaden, Katrin Sophie Bohnsack, Mirko Weber, Mateusz Kudla, Kaja Gutowska, Jacek Blazewicz, Thomas Villmann:
Learning vector quantization as an interpretable classifier for the detection of SARS-CoV-2 types based on their RNA sequences. Neural Comput. Appl. 34(1): 67-78 (2022) - [j15]Thomas Villmann, Alexander Engelsberger, Jensun Ravichandran, Andrea Villmann, Marika Kaden:
Quantum-inspired learning vector quantizers for prototype-based classification. Neural Comput. Appl. 34(1): 79-88 (2022) - [c47]Katrin Sophie Bohnsack, Marika Kaden, Julius Voigt, Thomas Villmann:
Efficient classification learning of biochemical structured data by means of relevance weighting for sensoric response features. ESANN 2022 - [c46]Danny Möbius, Jensun Ravichandran, Marika Kaden, Thomas Villmann:
Trustworthiness and Confidence of Gait Phase Predictions in Changing Environments Using Interpretable Classifier Models. ICONIP (2) 2022: 379-390 - [c45]Thomas Villmann, Daniel Staps, Jensun Ravichandran, Sascha Saralajew, Michael Biehl, Marika Kaden:
A Learning Vector Quantization Architecture for Transfer Learning Based Classification in Case of Multiple Sources by Means of Null-Space Evaluation. IDA 2022: 354-364 - [c44]Daniel Staps, Ronny Schubert, Marika Kaden, Alexander Lampe, Wieland Hermann, Thomas Villmann:
Prototype-based One-Class-Classification Learning Using Local Representations. IJCNN 2022: 1-8 - 2021
- [j14]Katrin Sophie Bohnsack, Marika Kaden, Julia Abel, Sascha Saralajew, Thomas Villmann:
The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers. Entropy 23(10): 1357 (2021) - [j13]Feryel Zoghlami, Marika Kaden, Thomas Villmann, Germar Schneider, Harald Heinrich:
AI-Based Multi Sensor Fusion for Smart Decision Making: A Bi-Functional System for Single Sensor Evaluation in a Classification Task. Sensors 21(13): 4405 (2021) - [c43]Marika Kaden, Ronny Schubert, Mehrdad Mohannazadeh Bakhtiari, Lucas Schwarz, Thomas Villmann:
The LVQ-based Counter Propagation Network - an Interpretable Information Bottleneck Approach. ESANN 2021 - [c42]Jensun Ravichandran, Thomas Villmann, Marika Kaden:
RecLVQ: Recurrent Learning Vector Quantization. ESANN 2021 - [c41]Seyedfakhredin Musavishavazi, Marika Kaden, Thomas Villmann:
Possibilistic Classification Learning Based on Contrastive Loss in Learning Vector Quantizer Networks. ICAISC (1) 2021: 156-167 - [c40]Feryel Zoghlami, Marika Kaden, Thomas Villmann, Germar Schneider, Harald Heinrich:
Sensors data fusion for smart decisions making: A novel bi-functional system for the evaluation of sensors contribution in classification problems. ICIT 2021: 1417-1423 - 2020
- [j12]Jensun Ravichandran, Marika Kaden, Sascha Saralajew, Thomas Villmann:
Variants of DropConnect in Learning vector quantization networks for evaluation of classification stability. Neurocomputing 403: 121-132 (2020) - [j11]Michiel Straat, Marika Kaden, Matthias Gay, Thomas Villmann, Alexander Lampe, Udo Seiffert, Michael Biehl, Friedrich Melchert:
Learning vector quantization and relevances in complex coefficient space. Neural Comput. Appl. 32(24): 18085-18099 (2020) - [c39]Thomas Villmann, Jensun Ravichandran, Alexander Engelsberger, Andrea Villmann, Marika Kaden:
Quantum-Inspired Learning Vector Quantization for Classification Learning. ESANN 2020: 279-284
2010 – 2019
- 2019
- [j10]Sebastian Bittrich, Marika Kaden, Christoph Leberecht, Florian Kaiser, Thomas Villmann, Dirk Labudde:
Application of an interpretable classification model on Early Folding Residues during protein folding. BioData Min. 12(1): 1:1-1:16 (2019) - [c38]Thomas Villmann, Marika Kaden, Mehrdad Mohannazadeh Bakhtiari, Andrea Villmann:
Appropriate Data Density Models in Probabilistic Machine Learning Approaches for Data Analysis. ICAISC (2) 2019: 443-454 - [c37]Thomas Villmann, Jensun Ravichandran, Andrea Villmann, David Nebel, Marika Kaden:
Investigation of Activation Functions for Generalized Learning Vector Quantization. WSOM+ 2019: 179-188 - [c36]Thomas Villmann, Marika Kaden, Szymon Wasik, Mateusz Kudla, Kaja Gutowska, Andrea Villmann, Jacek Blazewicz:
Searching for the Origins of Life - Detecting RNA Life Signatures Using Learning Vector Quantization. WSOM+ 2019: 324-333 - [i2]Thomas Villmann, John Ravichandran, Andrea Villmann, David Nebel, Marika Kaden:
Activation Functions for Generalized Learning Vector Quantization - A Performance Comparison. CoRR abs/1901.05995 (2019) - 2018
- [j9]Thomas Villmann, Marika Kaden, Wieland Hermann, Michael Biehl:
Learning vector quantization classifiers for ROC-optimization. Comput. Stat. 33(3): 1173-1194 (2018) - [c35]Andrea Villmann, Marika Kaden, Sascha Saralajew, Wieland Hermann, Thomas Villmann:
Reliable Patient Classification in Case of Uncertain Class Labels Using a Cross-Entropy Approach. ESANN 2018 - [c34]Andrea Villmann, Marika Kaden, Sascha Saralajew, Thomas Villmann:
Probabilistic Learning Vector Quantization with Cross-Entropy for Probabilistic Class Assignments in Classification Learning. ICAISC (1) 2018: 724-735 - [c33]Maik Benndorf, Marika Kaden, Frederic Ringsleben, Christian Roschke, Rico Thomanek, Martin Gaedke, Thomas Haenselmann:
Investigating the Influence of CPU Load, Memory Usage and Environmental Conditions on the Jittering of Android Devices. ICNCC 2018: 102-106 - 2017
- [j8]David Nebel, Marika Kaden, Andrea Villmann, Thomas Villmann:
Types of (dis-)similarities and adaptive mixtures thereof for improved classification learning. Neurocomputing 268: 42-54 (2017) - [j7]Thomas Villmann, Andrea Bohnsack, Marika Kaden:
Can Learning Vector Quantization be an Alternative to SVM and Deep Learning? - Recent Trends and Advanced Variants of Learning Vector Quantization for Classification Learning. J. Artif. Intell. Soft Comput. Res. 7(1): 65 (2017) - [c32]Michiel Straat, Marika Kaden, Matthias Gay, Thomas Villmann, Alexander Lampe, Udo Seiffert, Michael Biehl, Friedrich Melchert:
Prototypes and matrix relevance learning in complex fourier space. WSOM 2017: 139-144 - [c31]Marika Kaden, David Nebel, Friedrich Melchert, Andreas Backhaus, Udo Seiffert, Thomas Villmann:
Data dependent evaluation of dissimilarities in nearest prototype vector quantizers regarding their discriminating abilities. WSOM 2017: 220-226 - 2016
- [b1]Marika Kaden:
Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models. Leipzig University, Germany, 2016 - [j6]Andrea Bohnsack, Kristin Domaschke, Marika Kaden, Mandy Lange, Thomas Villmann:
Learning matrix quantization and relevance learning based on Schatten-p-norms. Neurocomputing 192: 104-114 (2016) - [c30]Marika Kaden, David Nebel, Thomas Villmann:
Adaptive dissimilarity weighting for prototype-based classification optimizing mixtures of dissimilarities. ESANN 2016 - [c29]Thomas Villmann, Marika Kaden, David Nebel, Andrea Bohnsack:
Similarities, Dissimilarities and Types of Inner Products for Data Analysis in the Context of Machine Learning - A Mathematical Characterization. ICAISC (2) 2016: 125-133 - [c28]Thomas Villmann, Marika Kaden, Andrea Bohnsack, J.-M. Villmann, T. Drogies, Sascha Saralajew, Barbara Hammer:
Self-Adjusting Reject Options in Prototype Based Classification. WSOM 2016: 269-279 - [c27]Matthias Gay, Marika Kaden, Michael Biehl, Alexander Lampe, Thomas Villmann:
Complex Variants of GLVQ Based on Wirtinger's Calculus. WSOM 2016: 293-303 - [c26]Kerstin Bunte, Marika Kaden, Frank-Michael Schleif:
Low-Rank Kernel Space Representations in Prototype Learning. WSOM 2016: 341-353 - 2015
- [j5]Thomas Villmann, Sven Haase, Marika Kaden:
Kernelized vector quantization in gradient-descent learning. Neurocomputing 147: 83-95 (2015) - [j4]Marika Kaden, Martin Riedel, Wieland Hermann, Thomas Villmann:
Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines. Soft Comput. 19(9): 2423-2434 (2015) - [c25]Thomas Villmann, Marika Kaden, David Nebel, Michael Biehl:
Learning Vector Quantization with Adaptive Cost-Based Outlier-Rejection. CAIP (2) 2015: 772-782 - [c24]Kristin Domaschke, Marika Kaden, Mandy Lange, Thomas Villmann:
Learning matrix quantization and variants of relevance learning. ESANN 2015 - [c23]Andrea Bohnsack, Kristin Domaschke, Marika Kaden, Mandy Lange, Thomas Villmann:
Mathematical Characterization of Sophisticated Variants for Relevance Learning in Learning Matrix Quantization Based on Schatten-p-norms. ICAISC (1) 2015: 403-414 - 2014
- [j3]Thomas Villmann, Marika Kaden, David Nebel, Martin Riedel:
Lateral enhancement in adaptive metric learning for functional data. Neurocomputing 131: 23-31 (2014) - [c22]Thomas Villmann, Marika Kaden, Mandy Lange, Paul Sturmer, Wieland Hermann:
Precision-Recall-Optimization in Learning Vector Quantization Classifiers for Improved Medical Classification Systems. CIDM 2014: 71-77 - [c21]Marika Kaden, Wieland Hermann, Thomas Villmann:
Optimization of General Statistical Accuracy Measures for Classification Based on Learning Vector Quantization. ESANN 2014 - [c20]Marika Kaden, Wieland Hermann, Thomas Villmann:
Attention Based Classification Learning in GLVQ and Asymmetric Misclassification Assessment. WSOM 2014: 77-87 - [c19]Mathias Klingner, Sven Hellbach, Martin Riedel, Marika Kaden, Thomas Villmann, Hans-Joachim Böhme:
RFSOM - Extending Self-Organizing Feature Maps with Adaptive Metrics to Combine Spatial and Textural Features for Body Pose Estimation. WSOM 2014: 157-166 - [e1]Thomas Villmann, Frank-Michael Schleif, Marika Kaden, Mandy Lange:
Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, WSOM 2014, Mittweida, Germany, July, 2-4, 2014. Advances in Intelligent Systems and Computing 295, Springer 2014, ISBN 978-3-319-07694-2 [contents] - 2013
- [j2]Tina Geweniger, Lydia Fischer, Marika Kaden, Mandy Lange, Thomas Villmann:
Clustering by Fuzzy Neural Gas and Evaluation of Fuzzy Clusters. Comput. Intell. Neurosci. 2013: 165248:1-165248:10 (2013) - [c18]Tina Geweniger, Marika Kästner, Thomas Villmann:
Border sensitive fuzzy vector quantization in semi-supervised learning. ESANN 2013 - [c17]Marika Kästner, Marc Strickert, Thomas Villmann:
A sparse kernelized matrix learning vector quantization model for human activity recognition. ESANN 2013 - [c16]Martin Riedel, Fabrice Rossi, Marika Kästner, Thomas Villmann:
Regularization in relevance learning vector quantization using l1-norms. ESANN 2013 - [c15]Thomas Villmann, Marika Kästner, Andreas Backhaus, Udo Seiffert:
Processing Hyperspectral Data in Machine Learning. ESANN 2013 - [c14]Mandy Lange, Marika Kästner, Thomas Villmann:
About analysis and robust classification of searchlight fMRI-data using machine learning classifiers. IJCNN 2013: 1-8 - [c13]Marika Kästner, Martin Riedel, Marc Strickert, Wieland Hermann, Thomas Villmann:
Border-Sensitive Learning in Kernelized Learning Vector Quantization. IWANN (1) 2013: 357-366 - [i1]Martin Riedel, Marika Kästner, Fabrice Rossi, Thomas Villmann:
Regularization in Relevance Learning Vector Quantization Using l one Norms. CoRR abs/1310.5095 (2013) - 2012
- [j1]Marika Kästner, Barbara Hammer, Michael Biehl, Thomas Villmann:
Functional relevance learning in generalized learning vector quantization. Neurocomputing 90: 85-95 (2012) - [c12]Tina Geweniger, Marika Kästner, Mandy Lange, Thomas Villmann:
Modified Conn-Index for the evaluation of fuzzy clusterings. ESANN 2012 - [c11]Marika Kästner, Wieland Hermann, Thomas Villmann:
Integration of Structural Expert Knowledge about Classes for Classification Using the Fuzzy Supervised Neural Gas. ESANN 2012 - [c10]Marika Kästner, Thomas Villmann:
Fuzzy Supervised Self-Organizing Map for Semi-supervised Vector Quantization. ICAISC (1) 2012: 256-265 - [c9]Thomas Villmann, Tina Geweniger, Marika Kästner, Mandy Lange:
Fuzzy Neural Gas for Unsupervised Vector Quantization. ICAISC (1) 2012: 350-358 - [c8]Marika Kästner, David Nebel, Martin Riedel, Michael Biehl, Thomas Villmann:
Differentiable Kernels in Generalized Matrix Learning Vector Quantization. ICMLA (1) 2012: 132-137 - [c7]Thomas Villmann, Marika Kästner, David Nebel, Martin Riedel:
ICMLA Face Recognition Challenge - Results of the Team Computational Intelligence Mittweida. ICMLA (2) 2012: 592-595 - [c6]Michael Biehl, Marika Kästner, Mandy Lange, Thomas Villmann:
Non-Euclidean Principal Component Analysis and Oja's Learning Rule - Theoretical Aspects. WSOM 2012: 23-33 - [c5]Thomas Villmann, Sven Haase, Marika Kästner:
Gradient Based Learning in Vector Quantization Using Differentiable Kernels. WSOM 2012: 193-204 - 2011
- [c4]Tina Geweniger, Marika Kästner, Thomas Villmann:
Optimization of Parametrized Divergences in Fuzzy c-Means. ESANN 2011 - [c3]Marika Kästner, Barbara Hammer, Michael Biehl, Thomas Villmann:
Generalized functional relevance learning vector quantization. ESANN 2011 - [c2]Thomas Villmann, Marika Kästner:
Sparse Functional Relevance Learning in Generalized Learning Vector Quantization. WSOM 2011: 79-89 - [c1]Marika Kästner, Andreas Backhaus, Tina Geweniger, Sven Haase, Udo Seiffert, Thomas Villmann:
Relevance Learning in Unsupervised Vector Quantization Based on Divergences. WSOM 2011: 90-100
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-05 20:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint