


default search action
15th WSOM+ 2024: Mittweida, Germany
- Thomas Villmann, Marika Kaden, Tina Geweniger, Frank-Michael Schleif:

Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond - Proceedings of the 15th International Workshop, WSOM+ 2024, Mittweida, Germany, July 10-12, 2024. Lecture Notes in Networks and Systems 1087, Springer 2024, ISBN 978-3-031-67158-6 - Rewbenio A. Frota

, Guilherme A. Barreto
, Marley M. B. R. Vellasco
, Candida Menezes de Jesus
:
New Cloth Unto an Old Garment: SOM for Regeneration Learning. 1-10 - Jindriska Deckerová

, Jan Faigl
:
Unsupervised Learning-Based Data Collection Planning with Dubins Vehicle and Constrained Data Retrieving Time. 11-21 - Thomas Villmann, T. Davies, Alexander Engelsberger:

Hyperbox-GLVQ Based on Min-Max-Neurons. 22-31 - Marie Chavent, Marie Cottrell, Alex Mourer, Madalina Olteanu:

Sparse Clustering with K-Means - Which Penalties and for Which Data? 32-41 - John A. Lee:

Is t-SNE Becoming the New Self-organizing Map? Similarities and Differences. 42 - Jan-Ole Perschewski

, Johann Schmidt
, Sebastian Stober
:
Pursuing the Perfect Projection: A Projection Pursuit Framework for Deep Learning. 43-52 - Alexander Gepperth

:
Generalizing Self-organizing Maps: Large-Scale Training of GMMs and Applications in Data Science. 53-62 - Josh Taylor, Stella S. R. Offner:

A Self-Organizing UMAP for Clustering. 63-73 - Marika Kaden, Julius Voigt, Katrin Sophie Bohnsack, Mandy Lange-Geisler, Thomas Villmann:

Knowledge Integration in Vector Quantization Models and Corresponding Structured Covariance Estimation. 74-85 - Caroline König

, Alfredo Vellido
:
Exploring Data Distributions in Machine Learning Models with SOMs. 86-95 - Michael Biehl

, David Pavlov, Alice J. Sitch
, Alessandro Prete
, Wiebke Arlt
:
Interpretable Machine Learning in Endocrinology: A Diagnostic Tool in Primary Aldosteronism. 96-105 - Peter Tino:

The Beauty of Prototype Based Learning. 106 - Josh Taylor, Stella S. R. Offner:

Setting Vector Quantizer Resolution via Density Estimation Theory. 107-117 - Frank-Michael Schleif

:
Practical Approaches to Approximate Dominant Eigenvalues in Large Matrices. 118-128 - Jean-Charles Lamirel:

Enhancing LDA Method by the Use of Feature Maximization. 129-138 - Barbara Hammer

:
Explaining Neural Networks - Deep and Shallow. 139-140 - Felix Störck, Fabian Hinder, Johannes Brinkrolf

, Benjamin Paassen, Valerie Vaquet
, Barbara Hammer
:
FairGLVQ: Fairness in Partition-Based Classification. 141-151 - Ronny Schubert

, Thomas Villmann:
About Interpretable Learning Rules for Vector Quantizers - A Methodological Approach. 152-162 - Lydia Fischer, Patricia Wollstadt:

Precision and Recall Reject Curves. 163-173 - Daniel Staps

, Thomas Villmann
, Benjamin Paaßen
:
K Minimum Enclosing Balls for Outlier Detection. 174-184 - Alexander Gepperth

:
Probabilistic Models with Invariance. 185-195 - Bangguo Xu, Simei Yan, Liang Liu, Frank-Michael Schleif

:
Optimizing YOLOv5 for Green AI: A Study on Model Pruning and Lightweight Networks. 196-205 - Christian W. Frey

:
Process Phase Monitoring in Industrial Manufacturing Processes with a Hybrid Unsupervised Learning Strategy. 206-215 - Steven Lehmann

, Jörg Schließer
, Sandra Schumann, Heiner Winkler
, Iren Jabs:
Knowledge Management in SMEs: Applying Link Prediction for Assisted Decision Making. 216-225

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














