


default search action
14. AISTATS 2011: Fort Lauderdale, USA
- Geoffrey J. Gordon, David B. Dunson, Miroslav Dudík:

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. JMLR Proceedings 15, JMLR.org 2011 - Geoffrey J. Gordon, David B. Dunson:

Preface. 1-2 - Robert E. Tillman, Peter Spirtes:

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables. 3-15 - Jiji Zhang, Ricardo Bezerra de Andrade e Silva:

Discussion of "Learning Equivalence Classes of Acyclic Models with Latent and Selection Variables from Multiple Datasets with Overlapping Variables". 16-18 - Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, Robert E. Schapire:

Contextual Bandit Algorithms with Supervised Learning Guarantees. 19-26 - H. Brendan McMahan:

Discussion of "Contextual Bandit Algorithms with Supervised Learning Guarantees". 27-28 - Hugo Larochelle, Iain Murray:

The Neural Autoregressive Distribution Estimator. 29-37 - Yoshua Bengio:

Discussion of "The Neural Autoregressive Distribution Estimator". 38-39 - Qiang Liu, Alexander Ihler:

Learning Scale Free Networks by Reweighted L1 regularization. 40-48 - Deepak Agarwal:

Discussion of "Learning Scale Free Networks by Reweighted L1 regularization". 49-50 - Neil D. Lawrence:

Spectral Dimensionality Reduction via Maximum Entropy. 51-59 - Laurens van der Maaten:

Discussion of "Spectral Dimensionality Reduction via Maximum Entropy". 60-62 - Frederik Eaton:

A conditional game for comparing approximations. 63-71 - Vincent Conitzer:

Discussion of "A conditional game for comparing approximations". 72-73 - John W. Paisley, Chong Wang, David M. Blei:

The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling. 74-82 - Frank D. Wood:

Discussion of "The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling". 83-84 - Arvind Agarwal, Hal Daumé III:

Generative Kernels for Exponential Families. 85-92 - Deepak Agarwal, Lihong Li, Alexander J. Smola:

Linear-Time Estimators for Propensity Scores. 93-100 - Amr Ahmed, Qirong Ho, Choon Hui Teo, Jacob Eisenstein, Alexander J. Smola, Eric P. Xing:

Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text. 101-109 - Edoardo M. Airoldi, Bertrand Haas:

Polytope samplers for inference in ill-posed inverse problems. 110-118 - Mohammad Gheshlaghi Azar, Vicenç Gómez, Bert Kappen:

Dynamic Policy Programming with Function Approximation. 119-127 - Anoop Korattikara Balan, Levi Boyles, Max Welling, Jingu Kim, Haesun Park:

Statistical Optimization of Non-Negative Matrix Factorization. 128-136 - Krishnakumar Balasubramanian, Pinar Donmez, Guy Lebanon:

Unsupervised Supervised Learning II: Margin-Based Classification without Labels. 137-145 - Dhruv Batra, Sebastian Nowozin, Pushmeet Kohli:

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm. 146-154 - Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:

Active Diagnosis under Persistent Noise with Unknown Noise Distribution: A Rank-Based Approach. 155-163 - Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas M. Breuel, Youssouf Chherawala, Moustapha Cissé, Myriam Côté, Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François Savard, Guillaume Sicard:

Deep Learners Benefit More from Out-of-Distribution Examples. 164-172 - John Blitzer, Sham M. Kakade, Dean P. Foster:

Domain Adaptation with Coupled Subspaces. 173-181 - Abdeslam Boularias, Jens Kober, Jan Peters:

Relative Entropy Inverse Reinforcement Learning. 182-189 - Chris Bracegirdle, David Barber:

Switch-Reset Models : Exact and Approximate Inference. 190-198 - Edward Challis, David Barber:

Concave Gaussian Variational Approximations for Inference in Large-Scale Bayesian Linear Models. 199-207 - Wei Chu, Lihong Li, Lev Reyzin, Robert E. Schapire:

Contextual Bandits with Linear Payoff Functions. 208-214 - Adam Coates, Andrew Y. Ng, Honglak Lee:

An Analysis of Single-Layer Networks in Unsupervised Feature Learning. 215-223 - Ronan Collobert:

Deep Learning for Efficient Discriminative Parsing. 224-232 - Aaron C. Courville, James Bergstra, Yoshua Bengio:

A Spike and Slab Restricted Boltzmann Machine. 233-241 - Christopher R. Dance, Onno Zoeter:

Optimal and Robust Price Experimentation: Learning by Lottery. 242-250 - Gal Elidan:

Bagged Structure Learning of Bayesian Network. 251-259 - Brian Eriksson, Gautam Dasarathy, Aarti Singh, Robert D. Nowak:

Active Clustering: Robust and Efficient Hierarchical Clustering using Adaptively Selected Similarities. 260-268 - Ahmed K. Farahat, Ali Ghodsi, Mohamed S. Kamel:

A novel greedy algorithm for Nyström approximation. 269-277 - James R. Foulds, Nicholas Navaroli, Padhraic Smyth, Alexander Ihler:

Revisiting MAP Estimation, Message Passing and Perfect Graphs. 278-286 - James R. Foulds, Christopher DuBois, Arthur U. Asuncion, Carter T. Butts, Padhraic Smyth:

A Dynamic Relational Infinite Feature Model for Longitudinal Social Networks. 287-295 - Rahul Garg, Rohit Khandekar:

Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso. 296-304 - Pierre Geurts:

Learning from positive and unlabeled examples by enforcing statistical significance. 305-314 - Xavier Glorot

, Antoine Bordes, Yoshua Bengio:
Deep Sparse Rectifier Neural Networks. 315-323 - Joseph Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin:

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees. 324-332 - Qirong Ho, Ankur P. Parikh, Le Song, Eric P. Xing:

Multiscale Community Blockmodel for Network Exploration. 333-341 - Qirong Ho, Le Song, Eric P. Xing:

Evolving Cluster Mixed-Membership Blockmodel for Time-Evolving Networks. 342-350 - Sue Ann Hong, Geoffrey J. Gordon:

Optimal Distributed Market-Based Planning for Multi-Agent Systems with Shared Resources. 351-360 - Bert Huang, Tony Jebara:

Fast b-matching via Sufficient Selection Belief Propagation. 361-369 - Zakria Hussain, John Shawe-Taylor:

Improved Loss Bounds For Multiple Kernel Learning. 370-377 - Ali Jalali, Pradeep Ravikumar, Vishvas Vasuki, Sujay Sanghavi:

On Learning Discrete Graphical Models using Group-Sparse Regularization. 378-387 - Jeremy Jancsary, Gerald Matz:

Convergent Decomposition Solvers for Tree-reweighted Free Energies. 388-398 - Vladimir Jojic, Suchi Saria, Daphne Koller:

Convex envelopes of complexity controlling penalties: the case against premature envelopment. 399-406 - Mladen Kolar, Eric P. Xing:

On Time Varying Undirected Graphs. 407-415 - Simon Lacoste-Julien, Ferenc Huszar, Zoubin Ghahramani:

Approximate inference for the loss-calibrated Bayesian. 416-424 - Balaji Lakshminarayanan, Guillaume Bouchard, Cédric Archambeau:

Robust Bayesian Matrix Factorisation. 425-433 - Bin Li, Steven C. H. Hoi, Peilin Zhao, Vivekanand Gopalkrishnan:

Confidence Weighted Mean Reversion Strategy for On-Line Portfolio Selection. 434-442 - Dazhuo Li, Patrick Shafto:

Bayesian Hierarchical Cross-Clustering. 443-451 - Aurélie C. Lozano, Grzegorz Swirszcz, Naoki Abe:

Group Orthogonal Matching Pursuit for Logistic Regression. 452-460 - Hongtao Lu, Xianzhong Long, Jingyuan Lv:

A Fast Algorithm for Recovery of Jointly Sparse Vectors based on the Alternating Direction Methods. 461-469 - Heng Luo, Ruimin Shen, Changyong Niu, Carsten Ullrich:

Learning Class-relevant Features and Class-irrelevant Features via a Hybrid third-order RBM. 470-478 - Laurens van der Maaten, Max Welling, Lawrence K. Saul:

Hidden-Unit Conditional Random Fields. 479-488 - Satyaki Mahalanabis:

Learning mixtures of Gaussians with maximum-a-posteriori oracle. 489-497 - Ravi Sastry Ganti Mahapatruni, Alexander G. Gray:

CAKE: Convex Adaptive Kernel Density Estimation. 498-506 - André Filipe Torres Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, Mário A. T. Figueiredo:

Online Learning of Structured Predictors with Multiple Kernels. 507-515 - Daniel J. McDonald, Cosma Rohilla Shalizi, Mark J. Schervish:

Estimating beta-mixing coefficients. 516-524 - H. Brendan McMahan:

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization. 525-533 - Mehryar Mohri, Ameet Talwalkar:

Can matrix coherence be efficiently and accurately estimated? 534-542 - Ramesh Nallapati, Daniel A. McFarland, Christopher D. Manning:

TopicFlow Model: Unsupervised Learning of Topic-specific Influences of Hyperlinked Documents. 543-551 - Donglin Niu, Jennifer G. Dy, Michael I. Jordan:

Dimensionality Reduction for Spectral Clustering. 552-560 - Gang Niu, Bo Dai, Lin Shang, Masashi Sugiyama:

Maximum Volume Clustering. 561-569 - Odalric-Ambrym Maillard, Rémi Munos:

Adaptive Bandits: Towards the best history-dependent strategy. 570-578 - Jaakko Peltonen, Samuel Kaski:

Generative Modeling for Maximizing Precision and Recall in Information Visualization. 579-587 - José M. Peña:

Faithfulness in Chain Graphs: The Gaussian Case. 588-599 - Sergey M. Plis, Stephen McCracken, Terran Lane, Vince D. Calhoun:

Directional Statistics on Permutations. 600-608 - Barnabás Póczos, Jeff G. Schneider:

On the Estimation of alpha-Divergences. 609-617 - Pradeep Ravikumar, Ambuj Tewari, Eunho Yang:

On NDCG Consistency of Listwise Ranking Methods. 618-626 - Stéphane Ross, Geoffrey J. Gordon, Drew Bagnell:

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. 627-635 - Ankan Saha, Ambuj Tewari:

Improved Regret Guarantees for Online Smooth Convex Optimization with Bandit Feedback. 636-642 - Avishek Saha, Piyush Rai, Hal Daumé III, Suresh Venkatasubramanian:

Online Learning of Multiple Tasks and Their Relationships. 643-651 - Matthias W. Seeger, Hannes Nickisch:

Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference. 652-660 - Ohad Shamir, Naftali Tishby:

Spectral Clustering on a Budget. 661-669 - Ricardo Bezerra de Andrade e Silva, Charles Blundell, Yee Whye Teh:

Mixed Cumulative Distribution Networks. 670-678 - Mathieu Sinn, Pascal Poupart:

Asymptotic Theory for Linear-Chain Conditional Random Fields. 679-687 - Ning Situ, Xiaojing Yuan, George Zouridakis:

Assisting Main Task Learning by Heterogeneous Auxiliary Tasks with Applications to Skin Cancer Screening. 688-697 - Richard Socher, Andrew L. Maas, Christopher D. Manning:

Spectral Chinese Restaurant Processes: Nonparametric Clustering Based on Similarities. 698-706 - Le Song, Arthur Gretton, Danny Bickson, Yucheng Low, Carlos Guestrin:

Kernel Belief Propagation. 707-715 - Amos J. Storkey:

Machine Learning Markets. 716-724 - Veselin Stoyanov, Alexander Ropson, Jason Eisner:

Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure. 725-733 - Mingxuan Sun, Guy Lebanon, Paul Kidwell:

Estimating Probabilities in Recommendation Systems. 734-742 - Kirill Trapeznikov, Venkatesh Saligrama, David A. Castañón:

Active Boosted Learning (ActBoost). 743-751 - Chong Wang, John W. Paisley, David M. Blei:

Online Variational Inference for the Hierarchical Dirichlet Process. 752-760 - Meihong Wang, Fei Sha:

Information Theoretical Clustering via Semidefinite Programming. 761-769 - David Wingate, Andreas Stuhlmüller, Noah D. Goodman:

Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation. 770-778 - Rongjing Xiang, Jennifer Neville:

Relational Learning with One Network: An Asymptotic Analysis. 779-788 - Liang Xiong, Barnabás Póczos, Jeff G. Schneider, Andrew J. Connolly, Jake VanderPlas:

Hierarchical Probabilistic Models for Group Anomaly Detection. 789-797 - Tianbing Xu, Alexander Ihler:

Multicore Gibbs Sampling in Dense, Unstructured Graphs. 798-806 - Makoto Yamada, Masashi Sugiyama:

Cross-Domain Object Matching with Model Selection. 807-815 - Liu Yang, Steve Hanneke, Jaime G. Carbonell:

The Sample Complexity of Self-Verifying Bayesian Active Learning. 816-822 - Shuang-Hong Yang, Steven P. Crain, Hongyuan Zha:

Bridging the Language Gap: Topic Adaptation for Documents with Different Technicality. 823-831 - Gui-Bo Ye, Yifei Chen, Xiaohui Xie:

Efficient variable selection in support vector machines via the alternating direction method of multipliers. 832-840 - Xiaotong Yuan, Shuicheng Yan:

A Finite Newton Algorithm for Non-degenerate Piecewise Linear Systems. 841-854 - Erik Zawadzki, Geoffrey J. Gordon, André Platzer:

An Instantiation-Based Theorem Prover for First-Order Programming. 855-863 - Chao Zhang, Dacheng Tao:

Generalization Bound for Infinitely Divisible Empirical Process. 864-872 - Yi Zhang, Jeff G. Schneider:

Multi-Label Output Codes using Canonical Correlation Analysis. 873-882 - Mingyuan Zhou, Hongxia Yang, Guillermo Sapiro, David B. Dunson, Lawrence Carin:

Dependent Hierarchical Beta Process for Image Interpolation and Denoising. 883-891 - Xueyuan Zhou, Mikhail Belkin:

Semi-supervised Learning by Higher Order Regularization. 892-900 - Xueyuan Zhou, Nathan Srebro:

Error Analysis of Laplacian Eigenmaps for Semi-supervised Learning. 901-908 - Jinfeng Zhuang, Ivor W. Tsang

, Steven C. H. Hoi:
Two-Layer Multiple Kernel Learning. 909-917

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














