


default search action
SIAM Journal on Mathematics of Data Science, Volume 5
Volume 5, Number 1, March 2023
- Francesco Tudisco

, Desmond J. Higham:
Core-Periphery Detection in Hypergraphs. 1-21 - Léon Zheng, Elisa Riccietti

, Rémi Gribonval
:
Efficient Identification of Butterfly Sparse Matrix Factorizations. 22-49 - Christian Bayer

, Peter K. Friz
, Nikolas Tapia
:
Stability of Deep Neural Networks via Discrete Rough Paths. 50-76 - Adam Li

, Ronan Perry, Chester Huynh, Tyler M. Tomita, Ronak Mehta, Jesús Arroyo, Jesse Patsolic, Benjamin Falk, Sridevi V. Sarma, Joshua T. Vogelstein:
Manifold Oblique Random Forests: Towards Closing the Gap on Convolutional Deep Networks. 77-96 - Aurore Archimbaud

, Zlatko Drmac, Klaus Nordhausen
, Una Radojicic
, Anne Ruiz-Gazen:
Numerical Considerations and a new implementation for invariant coordinate selection. 97-121 - Farzan Farnia

, William W. Wang
, Subhro Das, Ali Jadbabaie
:
GAT-GMM: Generative Adversarial Training for Gaussian Mixture Models. 122-146 - Clément Elvira

, Cédric Herzet
:
Safe Rules for the Identification of Zeros in the Solutions of the SLOPE Problem. 147-173 - Tianjiao Li

, Guanghui Lan, Ashwin Pananjady
:
Accelerated and Instance-Optimal Policy Evaluation with Linear Function Approximation. 174-200 - Mikhael Carmona, Victor Chepoi, Guyslain Naves

, Pascal Préa:
A Simple and Optimal Algorithm for Strict Circular Seriation. 201-221 - David Hong

, Fan Yang
, Jeffrey A. Fessler
, Laura Balzano
:
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data. 222-250
Volume 5, Number 2, June 2023
- Philip S. Chodrow

, Nicole Eikmeier
, Jamie Haddock
:
Nonbacktracking Spectral Clustering of Nonuniform Hypergraphs. 251-279 - Wenyu Chen, Mathias Drton, Ali Shojaie:

Causal Structural Learning via Local Graphs. 280-305 - Sebastian Neumayer

, Alexis Goujon, Pakshal Bohra, Michael Unser:
Approximation of Lipschitz Functions Using Deep Spline Neural Networks. 306-322 - Attila Lovas, Iosif Lytras, Miklós Rásonyi, Sotirios Sabanis

:
Taming Neural Networks with TUSLA: Nonconvex Learning via Adaptive Stochastic Gradient Langevin Algorithms. 323-345 - Guillaume Huguet, Alexander Tong

, Bastian Rieck
, Jessie Huang, Manik Kuchroo, Matthew J. Hirn
, Guy Wolf
, Smita Krishnaswamy
:
Time-Inhomogeneous Diffusion Geometry and Topology. 346-372 - Jinjie Zhang, Yixuan Zhou, Rayan Saab:

Post-training Quantization for Neural Networks with Provable Guarantees. 373-399 - Ery Arias-Castro, Wanli Qiao

:
Moving Up the Cluster Tree with the Gradient Flow. 400-421 - Shayan Aziznejad

, Joaquim Campos, Michael Unser:
Measuring Complexity of Learning Schemes Using Hessian-Schatten Total Variation. 422-445 - Yatong Bai, Tanmay Gautam, Somayeh Sojoudi:

Efficient Global Optimization of Two-Layer ReLU Networks: Quadratic-Time Algorithms and Adversarial Training. 446-474 - Keaton Hamm

, Nick Henscheid, Shujie Kang:
Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning. 475-501 - Filipa Valdeira

, Ricardo Ferreira
, Alessandra Micheletti, Cláudia Soares:
Probabilistic Registration for Gaussian Process Three-Dimensional Shape Modelling in the Presence of Extensive Missing Data. 502-527 - Gilles Mordant, Axel Munk

:
Statistical Analysis of Random Objects Via Metric Measure Laplacians. 528-557 - Hong Ye Tan

, Subhadip Mukherjee, Junqi Tang
, Carola-Bibiane Schönlieb:
Data-Driven Mirror Descent with Input-Convex Neural Networks. 558-587
Volume 5, Number 3, September 2023
- Boris Landa

, Xiuyuan Cheng:
Robust Inference of Manifold Density and Geometry by Doubly Stochastic Scaling. 589-614 - Erhan Bayraktar

, Ali Devran Kara:
Approximate Q Learning for Controlled Diffusion Processes and Its Near Optimality. 615-638 - Eustasio del Barrio, Alberto González-Sanz

, Jean-Michel Loubes
, Jonathan Niles-Weed:
An Improved Central Limit Theorem and Fast Convergence Rates for Entropic Transportation Costs. 639-669 - Andreas Habring, Martin Holler

:
A Note on the Regularity of Images Generated by Convolutional Neural Networks. 670-692 - Jie Jiang

, Xiaojun Chen:
Optimality Conditions for Nonsmooth Nonconvex-Nonconcave Min-Max Problems and Generative Adversarial Networks. 693-722 - Liwei Jiang, Yudong Chen

, Lijun Ding:
Algorithmic Regularization in Model-Free Overparametrized Asymmetric Matrix Factorization. 723-744 - Bora Yongacoglu, Gürdal Arslan, Serdar Yüksel:

Satisficing Paths and Independent Multiagent Reinforcement Learning in Stochastic Games. 745-773 - Kiryung Lee, Dominik Stöger

:
Randomly Initialized Alternating Least Squares: Fast Convergence for Matrix Sensing. 774-799 - Henri Riihimäki

:
Simplicial \({\boldsymbol{q}}\) -Connectivity of Directed Graphs with Applications to Network Analysis. 800-828
Volume 5, Number 4, December 2023
- Brent Sprangers, Nick Vannieuwenhoven

:
Group-Invariant Tensor Train Networks for Supervised Learning. 829-853 - Daniel Beaglehole, Mikhail Belkin, Parthe Pandit:

On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions. 854-872 - Michael Perlmutter, Alexander Tong, Feng Gao

, Guy Wolf
, Matthew J. Hirn
:
Understanding Graph Neural Networks with Generalized Geometric Scattering Transforms. 873-898 - Gero Friesecke

, Maximilian Penka
:
The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines. 899-919 - Ramchandran Muthukumar

, Jeremias Sulam:
Adversarial Robustness of Sparse Local Lipschitz Predictors. 920-948 - Yihang Gao

, Michael K. Ng
, Mingjie Zhou:
Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks. 949-976 - Nikhil Ghosh, Mikhail Belkin:

A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors. 977-1004 - Eldad Haber, Moshe Eliasof, Luis Tenorio:

Estimating a Potential Without the Agony of the Partition Function. 1005-1027 - Nicolas Keriven

:
Entropic Optimal Transport on Random Graphs. 1028-1050 - Matteo Cacciola, Antonio Frangioni, Xinlin Li, Andrea Lodi

:
Deep Neural Networks Pruning via the Structured Perspective Regularization. 1051-1077 - Zaiwei Chen

, John-Paul Clarke, Siva Theja Maguluri:
Target Network and Truncation Overcome the Deadly Triad in \(\boldsymbol{Q}\)-Learning. 1078-1101 - Aaron Berk

, Simone Brugiapaglia
, Tim Hoheisel:
LASSO Reloaded: A Variational Analysis Perspective with Applications to Compressed Sensing. 1102-1129 - Yifan Zhang

, Joe Kileel:
Moment Estimation for Nonparametric Mixture Models through Implicit Tensor Decomposition. 1130-1159 - Kevin S. Miller

, Jeff Calder
:
Poisson Reweighted Laplacian Uncertainty Sampling for Graph-Based Active Learning. 1160-1190

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














