default search action
Michael U. Gutmann
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Vaidotas Simkus, Michael U. Gutmann:
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families. Trans. Mach. Learn. Res. 2024 (2024) - [i26]Vaidotas Simkus, Michael U. Gutmann:
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families. CoRR abs/2403.03069 (2024) - 2023
- [j10]Vaidotas Simkus, Benjamin Rhodes, Michael U. Gutmann:
Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data. J. Mach. Learn. Res. 24: 196:1-196:72 (2023) - [j9]Afonso Eduardo, Michael U. Gutmann:
Bayesian Optimization with Informative Covariance. Trans. Mach. Learn. Res. 2023 (2023) - [j8]Vaidotas Simkus, Michael U. Gutmann:
Conditional Sampling of Variational Autoencoders via Iterated Approximate Ancestral Sampling. Trans. Mach. Learn. Res. 2023 (2023) - [j7]Akash Srivastava, Seungwook Han, Kai Xu, Benjamin Rhodes, Michael U. Gutmann:
Estimating the Density Ratio between Distributions with High Discrepancy using Multinomial Logistic Regression. Trans. Mach. Learn. Res. 2023 (2023) - [c16]Yanzhi Chen, Michael U. Gutmann, Adrian Weller:
Is Learning Summary Statistics Necessary for Likelihood-free Inference? ICML 2023: 4529-4544 - [i25]Akash Srivastava, Seungwook Han, Kai Xu, Benjamin Rhodes, Michael U. Gutmann:
Estimating the Density Ratio between Distributions with High Discrepancy using Multinomial Logistic Regression. CoRR abs/2305.00869 (2023) - [i24]Simon Valentin, Steven Kleinegesse, Neil R. Bramley, Peggy Seriès, Michael U. Gutmann, Christopher G. Lucas:
Designing Optimal Behavioral Experiments Using Machine Learning. CoRR abs/2305.07721 (2023) - [i23]Vaidotas Simkus, Michael U. Gutmann:
Conditional Sampling of Variational Autoencoders via Iterated Approximate Ancestral Sampling. CoRR abs/2308.09078 (2023) - 2022
- [j6]Bo Wang, Andy Law, Tim Regan, Nicholas Parkinson, Joby Cole, Clark D. Russell, David H. Dockrell, Michael U. Gutmann, J. Kenneth Baillie:
Systematic comparison of ranking aggregation methods for gene lists in experimental results. Bioinform. 38(21): 4927-4933 (2022) - [j5]Benjamin Rhodes, Michael U. Gutmann:
Enhanced gradient-based MCMC in discrete spaces. Trans. Mach. Learn. Res. 2022 (2022) - [i22]Michael U. Gutmann, Steven Kleinegesse, Benjamin Rhodes:
Statistical applications of contrastive learning. CoRR abs/2204.13999 (2022) - [i21]Michael U. Gutmann:
Pen and Paper Exercises in Machine Learning. CoRR abs/2206.13446 (2022) - [i20]Benjamin Rhodes, Michael U. Gutmann:
Enhanced gradient-based MCMC in discrete spaces. CoRR abs/2208.00040 (2022) - [i19]Afonso Eduardo, Michael U. Gutmann:
Bayesian Optimization with Informative Covariance. CoRR abs/2208.02704 (2022) - 2021
- [c15]Simon Valentin, Steven Kleinegesse, Neil R. Bramley, Michael U. Gutmann, Chris Lucas:
Bayesian Experimental Design for Intractable Models of Cognition. CogSci 2021 - [c14]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. ICLR 2021 - [c13]Desi R. Ivanova, Adam Foster, Steven Kleinegesse, Michael U. Gutmann, Thomas Rainforth:
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods. NeurIPS 2021: 25785-25798 - [i18]Steven Kleinegesse, Michael U. Gutmann:
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds. CoRR abs/2105.04379 (2021) - [i17]Simon Valentin, Steven Kleinegesse, Neil R. Bramley, Michael U. Gutmann, Christopher G. Lucas:
Bayesian Optimal Experimental Design for Simulator Models of Cognition. CoRR abs/2110.15632 (2021) - [i16]Desi R. Ivanova, Adam Foster, Steven Kleinegesse, Michael U. Gutmann, Tom Rainforth:
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods. CoRR abs/2111.02329 (2021) - [i15]Vaidotas Simkus, Benjamin Rhodes, Michael U. Gutmann:
Variational Gibbs inference for statistical model estimation from incomplete data. CoRR abs/2111.13180 (2021) - 2020
- [c12]Borislav Ikonomov, Michael U. Gutmann:
Robust Optimisation Monte Carlo. AISTATS 2020: 2819-2829 - [c11]Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton:
Generative Ratio Matching Networks. ICLR 2020 - [c10]Steven Kleinegesse, Michael U. Gutmann:
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation. ICML 2020: 5316-5326 - [c9]Tatiana Lopez-Guevara, Rita Pucci, Nicholas K. Taylor, Michael U. Gutmann, Subramanian Ramamoorthy, Kartic Subr:
Stir to Pour: Efficient Calibration of Liquid Properties for Pouring Actions. IROS 2020: 5351-5357 - [c8]Benjamin Rhodes, Kai Xu, Michael U. Gutmann:
Telescoping Density-Ratio Estimation. NeurIPS 2020 - [i14]Steven Kleinegesse, Michael U. Gutmann:
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation. CoRR abs/2002.08129 (2020) - [i13]Steven Kleinegesse, Christopher C. Drovandi, Michael U. Gutmann:
Sequential Bayesian Experimental Design for Implicit Models via Mutual Information. CoRR abs/2003.09379 (2020) - [i12]Benjamin Rhodes, Kai Xu, Michael U. Gutmann:
Telescoping Density-Ratio Estimation. CoRR abs/2006.12204 (2020) - [i11]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. CoRR abs/2010.10079 (2020)
2010 – 2019
- 2019
- [c7]Steven Kleinegesse, Michael U. Gutmann:
Efficient Bayesian Experimental Design for Implicit Models. AISTATS 2019: 476-485 - [c6]Yanzhi Chen, Michael U. Gutmann:
Adaptive Gaussian Copula ABC. AISTATS 2019: 1584-1592 - [c5]Benjamin Rhodes, Michael U. Gutmann:
Variational Noise-Contrastive Estimation. AISTATS 2019: 2741-2750 - [i10]Yanzhi Chen, Michael U. Gutmann:
Adaptive Gaussian Copula ABC. CoRR abs/1902.10704 (2019) - [i9]Borislav Ikonomov, Michael U. Gutmann:
Robust Optimisation Monte Carlo. CoRR abs/1904.00670 (2019) - [i8]Tatiana Lopez-Guevara, Rita Pucci, Nicholas K. Taylor, Michael U. Gutmann, Subramanian Ramamoorthy, Kartic Subr:
To Stir or Not to Stir: Online Estimation of Liquid Properties for Pouring Actions. CoRR abs/1904.02431 (2019) - [i7]Marko Järvenpää, Michael U. Gutmann, Aki Vehtari, Pekka Marttinen:
Parallel Gaussian process surrogate method to accelerate likelihood-free inference. CoRR abs/1905.01252 (2019) - 2018
- [j4]Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski:
ELFI: Engine for Likelihood-Free Inference. J. Mach. Learn. Res. 19: 16:1-16:7 (2018) - [j3]Michael U. Gutmann, Ritabrata Dutta, Samuel Kaski, Jukka Corander:
Likelihood-free inference via classification. Stat. Comput. 28(2): 411-425 (2018) - [c4]Ciwan Ceylan, Michael U. Gutmann:
Conditional Noise-Contrastive Estimation of Unnormalised Models. ICML 2018: 725-733 - [i6]Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton:
Ratio Matching MMD Nets: Low dimensional projections for effective deep generative models. CoRR abs/1806.00101 (2018) - [i5]Ciwan Ceylan, Michael U. Gutmann:
Conditional Noise-Contrastive Estimation of Unnormalised Models. CoRR abs/1806.03664 (2018) - [i4]Benjamin Rhodes, Michael U. Gutmann:
Variational Noise-Contrastive Estimation. CoRR abs/1810.08010 (2018) - [i3]Traiko Dinev, Michael U. Gutmann:
Dynamic Likelihood-free Inference via Ratio Estimation (DIRE). CoRR abs/1810.09899 (2018) - [i2]Steven Kleinegesse, Michael U. Gutmann:
Efficient Bayesian Experimental Design for Implicit Models. CoRR abs/1810.09912 (2018) - 2017
- [c3]Tatiana Lopez-Guevara, Nicholas K. Taylor, Michael U. Gutmann, Subramanian Ramamoorthy, Kartic Subr:
Adaptable Pouring: Teaching Robots Not to Spill using Fast but Approximate Fluid Simulation. CoRL 2017: 77-86 - [c2]Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, Charles Sutton:
VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning. NIPS 2017: 3308-3318 - [i1]Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski:
ELFI: Engine for Likelihood Free Inference. CoRR abs/1708.00707 (2017) - 2016
- [j2]Michael U. Gutmann, Jukka Corander:
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models. J. Mach. Learn. Res. 17: 125:1-125:47 (2016) - 2014
- [j1]Song Liu, John A. Quinn, Michael U. Gutmann, Taiji Suzuki, Masashi Sugiyama:
Direct Learning of Sparse Changes in Markov Networks by Density Ratio Estimation. Neural Comput. 26(6): 1169-1197 (2014) - 2013
- [c1]Song Liu, John A. Quinn, Michael U. Gutmann, Masashi Sugiyama:
Direct Learning of Sparse Changes in Markov Networks by Density Ratio Estimation. ECML/PKDD (2) 2013: 596-611
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 00:43 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint