default search action
Charles Sutton
Charles A. Sutton
Person information
- affiliation: Google Research, Mountain View, CA, USA
- affiliation: University of Edinburgh, School of Informatics
- affiliation: The Alan Turing Institute, London, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c84]Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, Charles Sutton:
ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis. ICLR 2024 - [c83]Lazar Valkov, Akash Srivastava, Swarat Chaudhuri, Charles Sutton:
A Probabilistic Framework for Modular Continual Learning. ICLR 2024 - [c82]Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, Pengcheng Yin:
NExT: Teaching Large Language Models to Reason about Code Execution. ICML 2024 - [i69]Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, Pengcheng Yin:
NExT: Teaching Large Language Models to Reason about Code Execution. CoRR abs/2404.14662 (2024) - [i68]Hanjun Dai, Bethany Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, Dale Schuurmans:
UQE: A Query Engine for Unstructured Databases. CoRR abs/2407.09522 (2024) - [i67]Kensen Shi, Deniz Altinbüken, Saswat Anand, Mihai Christodorescu, Katja Grünwedel, Alexa Koenings, Sai Naidu, Anurag Pathak, Marc Rasi, Fredde Ribeiro, Brandon Ruffin, Siddhant Sanyam, Maxim Tabachnyk, Sara Toth, Roy Tu, Tobias Welp, Pengcheng Yin, Manzil Zaheer, Satish Chandra, Charles Sutton:
Natural Language Outlines for Code: Literate Programming in the LLM Era. CoRR abs/2408.04820 (2024) - 2023
- [j13]Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, Noah Fiedel:
PaLM: Scaling Language Modeling with Pathways. J. Mach. Learn. Res. 24: 240:1-240:113 (2023) - [c81]Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, Charles Sutton:
Natural Language to Code Generation in Interactive Data Science Notebooks. ACL (1) 2023: 126-173 - [c80]Haoran Sun, Bo Dai, Charles Sutton, Dale Schuurmans, Hanjun Dai:
Any-scale Balanced Samplers for Discrete Space. ICLR 2023 - [c79]Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, Pengcheng Yin:
Can Large Language Models Reason about Program Invariants? ICML 2023: 27496-27520 - [c78]Matthew Douglas Hoffman, Du Phan, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel Sountsov, Charles Sutton, Sharad Vikram, Rif A. Saurous:
Training Chain-of-Thought via Latent-Variable Inference. NeurIPS 2023 - [c77]Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, Charles Sutton:
LambdaBeam: Neural Program Search with Higher-Order Functions and Lambdas. NeurIPS 2023 - [i66]Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, Charles Sutton:
LambdaBeam: Neural Program Search with Higher-Order Functions and Lambdas. CoRR abs/2306.02049 (2023) - [i65]Lazar Valkov, Akash Srivastava, Swarat Chaudhuri, Charles Sutton:
A Probabilistic Framework for Modular Continual Learning. CoRR abs/2306.06545 (2023) - [i64]Kensen Shi, Joey Hong, Manzil Zaheer, Pengcheng Yin, Charles Sutton:
ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis. CoRR abs/2307.13883 (2023) - [i63]Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash, Charles Sutton, Xuezhi Wang, Denny Zhou:
Universal Self-Consistency for Large Language Model Generation. CoRR abs/2311.17311 (2023) - [i62]Du Phan, Matthew D. Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel Sountsov, Charles Sutton, Sharad Vikram, Rif A. Saurous:
Training Chain-of-Thought via Latent-Variable Inference. CoRR abs/2312.02179 (2023) - [i61]Michael Pradel, Baishakhi Ray, Charles Sutton, Eran Yahav:
Programming Language Processing (Dagstuhl Seminar 23062). Dagstuhl Reports 13(2): 20-32 (2023) - 2022
- [j12]Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, Matthijs Vákár:
Conditional Independence by Typing. ACM Trans. Program. Lang. Syst. 44(1): 4:1-4:54 (2022) - [c76]Kensen Shi, Hanjun Dai, Kevin Ellis, Charles Sutton:
CrossBeam: Learning to Search in Bottom-Up Program Synthesis. ICLR 2022 - [e1]Swarat Chaudhuri, Charles Sutton:
MAPS@PLDI 2022: 6th ACM SIGPLAN International Symposium on Machine Programming, San Diego, CA, USA, 13 June 2022. ACM 2022, ISBN 978-1-4503-9273-0 [contents] - [i60]Kensen Shi, Hanjun Dai, Kevin Ellis, Charles Sutton:
CrossBeam: Learning to Search in Bottom-Up Program Synthesis. CoRR abs/2203.10452 (2022) - [i59]Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, Noah Fiedel:
PaLM: Scaling Language Modeling with Pathways. CoRR abs/2204.02311 (2022) - [i58]Kensen Shi, Joey Hong, Manzil Zaheer, Pengcheng Yin, Charles Sutton:
Compositional Generalization and Decomposition in Neural Program Synthesis. CoRR abs/2204.03758 (2022) - [i57]Simão Eduardo, Kai Xu, Alfredo Nazábal, Charles Sutton:
Repairing Systematic Outliers by Learning Clean Subspaces in VAEs. CoRR abs/2207.08050 (2022) - [i56]David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes, Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-Dickstein, Kevin Murphy, Charles Sutton:
Language Model Cascades. CoRR abs/2207.10342 (2022) - [i55]David Bieber, Kensen Shi, Petros Maniatis, Charles Sutton, Vincent J. Hellendoorn, Daniel D. Johnson, Daniel Tarlow:
A Library for Representing Python Programs as Graphs for Machine Learning. CoRR abs/2208.07461 (2022) - [i54]Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, Charles Sutton:
Natural Language to Code Generation in Interactive Data Science Notebooks. CoRR abs/2212.09248 (2022) - 2021
- [c75]Kai Xu, Tor Erlend Fjelde, Charles Sutton, Hong Ge:
Couplings for Multinomial Hamiltonian Monte Carlo. AISTATS 2021: 3646-3654 - [c74]Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, Hanjun Dai:
BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration. ICLR 2021 - [c73]Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, Denny Zhou:
SpreadsheetCoder: Formula Prediction from Semi-structured Context. ICML 2021: 1661-1672 - [c72]Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, Manzil Zaheer:
Latent Programmer: Discrete Latent Codes for Program Synthesis. ICML 2021: 4308-4318 - [c71]Kai Xu, Akash Srivastava, Dan Gutfreund, Felix Sosa, Tomer D. Ullman, Josh Tenenbaum, Charles Sutton:
A Bayesian-Symbolic Approach to Reasoning and Learning in Intuitive Physics. NeurIPS 2021: 2478-2490 - [c70]Shobha Vasudevan, Wenjie Jiang, David Bieber, Rishabh Singh, Hamid Shojaei, Richard Ho, Charles Sutton:
Learning Semantic Representations to Verify Hardware Designs. NeurIPS 2021: 23491-23504 - [i53]Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, Denny Zhou:
SpreadsheetCoder: Formula Prediction from Semi-structured Context. CoRR abs/2106.15339 (2021) - [i52]Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, Charles Sutton:
Program Synthesis with Large Language Models. CoRR abs/2108.07732 (2021) - [i51]Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, Augustus Odena:
Show Your Work: Scratchpads for Intermediate Computation with Language Models. CoRR abs/2112.00114 (2021) - 2020
- [c69]Simão Eduardo, Alfredo Nazábal, Christopher K. I. Williams, Charles Sutton:
Robust Variational Autoencoders for Outlier Detection and Repair of Mixed-Type Data. AISTATS 2020: 4056-4066 - [c68]Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, David Bieber:
Global Relational Models of Source Code. ICLR 2020 - [c67]Augustus Odena, Charles Sutton:
Learning to Represent Programs with Property Signatures. ICLR 2020 - [c66]Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton:
Generative Ratio Matching Networks. ICLR 2020 - [c65]Kensen Shi, David Bieber, Charles Sutton:
Incremental Sampling Without Replacement for Sequence Models. ICML 2020: 8785-8795 - [c64]Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles Sutton, Edward Aftandilian:
Learning to Fix Build Errors with Graph2Diff Neural Networks. ICSE (Workshops) 2020: 19-20 - [c63]Annie Louis, Santanu Kumar Dash, Earl T. Barr, Michael D. Ernst, Charles Sutton:
Where should I comment my code?: a dataset and model for predicting locations that need comments. ICSE (NIER) 2020: 21-24 - [c62]Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, Andrea Janes:
Open-vocabulary models for source code. ICSE (Companion Volume) 2020: 294-295 - [c61]Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, Andrea Janes:
Big code != big vocabulary: open-vocabulary models for source code. ICSE 2020: 1073-1085 - [c60]Rafael-Michael Karampatsis, Charles Sutton:
How Often Do Single-Statement Bugs Occur?: The ManySStuBs4J Dataset. MSR 2020: 573-577 - [c59]David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow:
Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks. NeurIPS 2020 - [c58]Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans:
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration. NeurIPS 2020 - [i50]Augustus Odena, Charles Sutton:
Learning to Represent Programs with Property Signatures. CoRR abs/2002.09030 (2020) - [i49]Kensen Shi, David Bieber, Charles Sutton:
Incremental Sampling Without Replacement for Sequence Models. CoRR abs/2002.09067 (2020) - [i48]Daniel A. Abolafia, Rishabh Singh, Manzil Zaheer, Charles Sutton:
Towards Modular Algorithm Induction. CoRR abs/2003.04227 (2020) - [i47]Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, Andrea Janes:
Big Code != Big Vocabulary: Open-Vocabulary Models for Source Code. CoRR abs/2003.07914 (2020) - [i46]Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, Charles Sutton:
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural Constraints. CoRR abs/2004.00348 (2020) - [i45]Rafael-Michael Karampatsis, Charles Sutton:
SCELMo: Source Code Embeddings from Language Models. CoRR abs/2004.13214 (2020) - [i44]Matej Balog, Rishabh Singh, Petros Maniatis, Charles Sutton:
Neural Program Synthesis with a Differentiable Fixer. CoRR abs/2006.10924 (2020) - [i43]Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton:
BUSTLE: Bottom-up program-Synthesis Through Learning-guided Exploration. CoRR abs/2007.14381 (2020) - [i42]Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, Matthijs Vákár:
Conditional independence by typing. CoRR abs/2010.11887 (2020) - [i41]David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow:
Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks. CoRR abs/2010.12621 (2020) - [i40]Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans:
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration. CoRR abs/2011.05363 (2020) - [i39]Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, Manzil Zaheer:
Latent Programmer: Discrete Latent Codes for Program Synthesis. CoRR abs/2012.00377 (2020)
2010 – 2019
- 2019
- [j11]Gerrit J. J. van den Burg, Alfredo Nazábal, Charles Sutton:
Wrangling messy CSV files by detecting row and type patterns. Data Min. Knowl. Discov. 33(6): 1799-1820 (2019) - [j10]Maria I. Gorinova, Andrew D. Gordon, Charles Sutton:
Probabilistic programming with densities in SlicStan: efficient, flexible, and deterministic. Proc. ACM Program. Lang. 3(POPL): 35:1-35:30 (2019) - [c57]Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Charles Sutton:
ColNet: Embedding the Semantics of Web Tables for Column Type Prediction. AAAI 2019: 29-36 - [c56]Benedek Rozemberczki, Ryan Davies, Rik Sarkar, Charles Sutton:
GEMSEC: graph embedding with self clustering. ASONAM 2019: 65-72 - [c55]Kai Xu, Akash Srivastava, Charles Sutton:
Variational Russian Roulette for Deep Bayesian Nonparametrics. ICML 2019: 6963-6972 - [c54]Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Charles Sutton:
Learning Semantic Annotations for Tabular Data. IJCAI 2019: 2088-2094 - [i38]Rafael-Michael Karampatsis, Charles Sutton:
Maybe Deep Neural Networks are the Best Choice for Modeling Source Code. CoRR abs/1903.05734 (2019) - [i37]Rafael-Michael Karampatsis, Charles Sutton:
How Often Do Single-Statement Bugs Occur? The ManySStuBs4J Dataset. CoRR abs/1905.13334 (2019) - [i36]Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Charles Sutton:
Learning Semantic Annotations for Tabular Data. CoRR abs/1906.00781 (2019) - [i35]Simão Eduardo, Alfredo Nazábal, Christopher K. I. Williams, Charles Sutton:
Robust Variational Autoencoders for Outlier Detection in Mixed-Type Data. CoRR abs/1907.06671 (2019) - [i34]Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles Sutton, Edward Aftandilian:
Learning to Fix Build Errors with Graph2Diff Neural Networks. CoRR abs/1911.01205 (2019) - 2018
- [j9]Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, Charles Sutton:
A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv. 51(4): 81:1-81:37 (2018) - [j8]Miltiadis Allamanis, Earl T. Barr, Christian Bird, Premkumar T. Devanbu, Mark Marron, Charles Sutton:
Mining Semantic Loop Idioms. IEEE Trans. Software Eng. 44(7): 651-668 (2018) - [c53]Chaoyun Zhang, Mingjun Zhong, Zongzuo Wang, Nigel H. Goddard, Charles Sutton:
Sequence-to-Point Learning With Neural Networks for Non-Intrusive Load Monitoring. AAAI 2018: 2604-2611 - [c52]Nikolaos Katirtzis, Themistoklis Diamantopoulos, Charles Sutton:
Summarizing Software API Usage Examples Using Clustering Techniques. FASE 2018: 189-206 - [c51]Charles Sutton, Timothy Hobson, James Geddes, Rich Caruana:
Data Diff: Interpretable, Executable Summaries of Changes in Distributions for Data Wrangling. KDD 2018: 2279-2288 - [c50]Annie Louis, Charles Sutton:
Deep Dungeons and Dragons: Learning Character-Action Interactions from Role-Playing Game Transcripts. NAACL-HLT (2) 2018: 708-713 - [c49]Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, Swarat Chaudhuri:
HOUDINI: Lifelong Learning as Program Synthesis. NeurIPS 2018: 8701-8712 - [c48]Tomas Petricek, James Geddes, Charles Sutton:
Wrattler: Reproducible, live and polyglot notebooks. TaPP 2018 - [i33]Benedek Rozemberczki, Ryan Davies, Rik Sarkar, Charles Sutton:
GEMSEC: Graph Embedding with Self Clustering. CoRR abs/1802.03997 (2018) - [i32]Kai Xu, Dae Hoon Park, Chang Yi, Charles Sutton:
Interpreting Deep Classifier by Visual Distillation of Dark Knowledge. CoRR abs/1803.04042 (2018) - [i31]Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, Swarat Chaudhuri:
Synthesis of Differentiable Functional Programs for Lifelong Learning. CoRR abs/1804.00218 (2018) - [i30]Akash Srivastava, Charles Sutton:
Variational Inference In Pachinko Allocation Machines. CoRR abs/1804.07944 (2018) - [i29]Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton:
Ratio Matching MMD Nets: Low dimensional projections for effective deep generative models. CoRR abs/1806.00101 (2018) - [i28]Annie Louis, Santanu Kumar Dash, Earl T. Barr, Charles Sutton:
Deep Learning to Detect Redundant Method Comments. CoRR abs/1806.04616 (2018) - [i27]Maria I. Gorinova, Andrew D. Gordon, Charles Sutton:
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic. CoRR abs/1811.00890 (2018) - [i26]Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Charles Sutton:
ColNet: Embedding the Semantics of Web Tables for Column Type Prediction. CoRR abs/1811.01304 (2018) - [i25]Gerrit J. J. van den Burg, Alfredo Nazábal, Charles Sutton:
Wrangling Messy CSV Files by Detecting Row and Type Patterns. CoRR abs/1811.11242 (2018) - 2017
- [j7]Jaroslav M. Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, Charles Sutton:
Autofolding for Source Code Summarization. IEEE Trans. Software Eng. 43(12): 1095-1109 (2017) - [c47]Akash Srivastava, Charles Sutton:
Autoencoding Variational Inference For Topic Models. ICLR (Poster) 2017 - [c46]Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, Charles Sutton:
Learning Continuous Semantic Representations of Symbolic Expressions. ICML 2017: 80-88 - [c45]Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, Charles Sutton:
VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning. NIPS 2017: 3308-3318 - [i24]Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, Charles Sutton:
A Survey of Machine Learning for Big Code and Naturalness. CoRR abs/1709.06182 (2017) - [i23]Charles Sutton, Linan Gong:
Popularity of arXiv.org within Computer Science. CoRR abs/1710.05225 (2017) - 2016
- [j6]Weikun Wang, Giuliano Casale, Charles Sutton:
A Bayesian Approach to Parameter Inference in Queueing Networks. ACM Trans. Model. Comput. Simul. 27(1): 2 (2016) - [c44]Wei Chen, David Aspinall, Andrew D. Gordon, Charles Sutton, Igor Muttik:
Explaining Unwanted Behaviours in Context. IMPS@ESSoS 2016: 38-45 - [c43]Wei Chen, David Aspinall, Andrew D. Gordon, Charles Sutton, Igor Muttik:
A text-mining approach to explain unwanted behaviours. EUROSEC 2016: 4:1-4:6 - [c42]Miltiadis Allamanis, Hao Peng, Charles Sutton:
A Convolutional Attention Network for Extreme Summarization of Source Code. ICML 2016: 2091-2100 - [c41]Jaroslav M. Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, Charles Sutton:
TASSAL: autofolding for source code summarization. ICSE (Companion Volume) 2016: 649-652 - [c40]Wei Chen, David Aspinall, Andrew D. Gordon, Charles Sutton, Igor Muttik:
On Robust Malware Classifiers by Verifying Unwanted Behaviours. IFM 2016: 326-341 - [c39]Daniel Duma, Charles Sutton, Ewan Klein:
Context Matters: Towards Extracting a Citation's Context Using Linguistic Features. JCDL 2016: 201-202 - [c38]Jaroslav M. Fowkes, Charles Sutton:
A Subsequence Interleaving Model for Sequential Pattern Mining. KDD 2016: 835-844 - [c37]Jaroslav M. Fowkes, Charles Sutton:
A Bayesian Network Model for Interesting Itemsets. ECML/PKDD (2) 2016: 410-425 - [c36]Krzysztof J. Geras, Charles Sutton:
Composite Denoising Autoencoders. ECML/PKDD (1) 2016: 681-696 - [c35]Jaroslav M. Fowkes, Charles Sutton:
Parameter-free probabilistic API mining across GitHub. SIGSOFT FSE 2016: 254-265 - [c34]Wei Chen, David Aspinall, Andrew D. Gordon, Charles Sutton, Igor Muttik:
More Semantics More Robust: Improving Android Malware Classifiers. WISEC 2016: 147-158 - [i22]Miltiadis Allamanis, Hao Peng, Charles Sutton:
A Convolutional Attention Network for Extreme Summarization of Source Code. CoRR abs/1602.03001 (2016) - [i21]Jaroslav M. Fowkes, Charles Sutton:
A Subsequence Interleaving Model for Sequential Pattern Mining. CoRR abs/1602.05012 (2016) - [i20]Akash Srivastava, James Y. Zou, Ryan P. Adams, Charles Sutton:
Clustering with a Reject Option: Interactive Clustering as Bayesian Prior Elicitation. CoRR abs/1602.06886 (2016) - [i19]Akash Srivastava, James Y. Zou, Ryan P. Adams, Charles Sutton:
Clustering with a Reject Option: Interactive Clustering as Bayesian Prior Elicitation. CoRR abs/1606.05896 (2016) - [i18]Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, Charles Sutton:
Learning Continuous Semantic Representations of Symbolic Expressions. CoRR abs/1611.01423 (2016) - [i17]Miltiadis Allamanis, Earl T. Barr, René Just, Charles Sutton:
Tailored Mutants Fit Bugs Better. CoRR abs/1611.02516 (2016) - [i16]Chaoyun Zhang, Mingjun Zhong, Zongzuo Wang, Nigel H. Goddard, Charles Sutton:
Sequence-to-point learning with neural networks for nonintrusive load monitoring. CoRR abs/1612.09106 (2016) - 2015
- [c33]Mingjun Zhong, Nigel H. Goddard, Charles Sutton:
Latent Bayesian melding for integrating individual and population models. NIPS 2015: 3618-3626 - [c32]Miltiadis Allamanis, Earl T. Barr, Christian Bird, Charles Sutton:
Suggesting accurate method and class names. ESEC/SIGSOFT FSE 2015: 38-49