default search action
Yaniv Romano
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j21]Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, Michael Elad:
Principal Uncertainty Quantification With Spatial Correlation for Image Restoration Problems. IEEE Trans. Pattern Anal. Mach. Intell. 46(5): 3321-3333 (2024) - [j20]Yaniv Romano, Harel Primack, Talya Vaknin, Idan Meirzada, Ilan Karpas, Dov Furman, Chene Tradonsky, Ruti Ben-Shlomi:
Quantum sparse coding. Quantum Mach. Intell. 6(1): 4 (2024) - [j19]Nelson Goldenstein, Jeremias Sulam, Yaniv Romano:
Pivotal Auto-Encoder via Self-Normalizing ReLU. IEEE Trans. Signal Process. 72: 3201-3212 (2024) - 2023
- [j18]Shai Feldman, Stephen Bates, Yaniv Romano:
Calibrated Multiple-Output Quantile Regression with Representation Learning. J. Mach. Learn. Res. 24: 24:1-24:48 (2023) - [j17]Shalev Shaer, Yaniv Romano:
Learning to increase the power of conditional randomization tests. Mach. Learn. 112(7): 2317-2357 (2023) - [j16]Shai Feldman, Liran Ringel, Stephen Bates, Yaniv Romano:
Achieving Risk Control in Online Learning Settings. Trans. Mach. Learn. Res. 2023 (2023) - [j15]Jacopo Teneggi, Beepul Bharti, Yaniv Romano, Jeremias Sulam:
SHAP-XRT: The Shapley Value Meets Conditional Independence Testing. Trans. Mach. Learn. Res. 2023 (2023) - 2020
- [j14]Yaniv Romano, Aviad Aberdam, Jeremias Sulam, Michael Elad:
Adversarial Noise Attacks of Deep Learning Architectures: Stability Analysis via Sparse-Modeled Signals. J. Math. Imaging Vis. 62(3): 313-327 (2020) - 2019
- [j13]Tao Hong, Yaniv Romano, Michael Elad:
Acceleration of RED via vector extrapolation. J. Vis. Commun. Image Represent. 63 (2019) - [j12]Alon Brifman, Yaniv Romano, Michael Elad:
Unified Single-Image and Video Super-Resolution via Denoising Algorithms. IEEE Trans. Image Process. 28(12): 6063-6076 (2019) - [j11]Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu, Michael Elad:
MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance. IEEE Trans. Signal Process. 67(17): 4597-4610 (2019) - 2018
- [j10]Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad:
Theoretical Foundations of Deep Learning via Sparse Representations: A Multilayer Sparse Model and Its Connection to Convolutional Neural Networks. IEEE Signal Process. Mag. 35(4): 72-89 (2018) - [j9]Yi Ren, Yaniv Romano, Michael Elad:
Example-Based Image Synthesis via Randomized Patch-Matching. IEEE Trans. Image Process. 27(1): 220-235 (2018) - [j8]Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad:
Multilayer Convolutional Sparse Modeling: Pursuit and Dictionary Learning. IEEE Trans. Signal Process. 66(15): 4090-4104 (2018) - 2017
- [j7]Vardan Papyan, Yaniv Romano, Michael Elad:
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding. J. Mach. Learn. Res. 18: 83:1-83:52 (2017) - [j6]Yaniv Romano, Michael Elad, Peyman Milanfar:
The Little Engine That Could: Regularization by Denoising (RED). SIAM J. Imaging Sci. 10(4): 1804-1844 (2017) - [j5]Jeremias Sulam, Yaniv Romano, Ronen Talmon:
Dynamical system classification with diffusion embedding for ECG-based person identification. Signal Process. 130: 403-411 (2017) - [j4]Yaniv Romano, John Isidoro, Peyman Milanfar:
RAISR: Rapid and Accurate Image Super Resolution. IEEE Trans. Computational Imaging 3(1): 110-125 (2017) - 2016
- [j3]Yaniv Romano, Michael Elad:
Con-Patch: When a Patch Meets Its Context. IEEE Trans. Image Process. 25(9): 3967-3978 (2016) - 2015
- [j2]Yaniv Romano, Michael Elad:
Boosting of Image Denoising Algorithms. SIAM J. Imaging Sci. 8(2): 1187-1219 (2015) - 2014
- [j1]Yaniv Romano, Matan Protter, Michael Elad:
Single Image Interpolation Via Adaptive Nonlocal Sparsity-Based Modeling. IEEE Trans. Image Process. 23(7): 3085-3098 (2014)
Conference and Workshop Papers
- 2024
- [c25]Ge Yan, Yaniv Romano, Tsui-Wei Weng:
Provably Robust Conformal Prediction with Improved Efficiency. ICLR 2024 - [c24]Liran Ringel, Regev Cohen, Daniel Freedman, Michael Elad, Yaniv Romano:
Early Time Classification with Accumulated Accuracy Gap Control. ICML 2024 - 2023
- [c23]Shalev Shaer, Gal Maman, Yaniv Romano:
Model-X Sequential Testing for Conditional Independence via Testing by Betting. AISTATS 2023: 2054-2086 - [c22]Shai Feldman, Bat-Sheva Einbinder, Stephen Bates, Anastasios N. Angelopoulos, Asaf Gendler, Yaniv Romano:
Conformal Prediction is Robust to Dispersive Label Noise. COPA 2023: 624-626 - [c21]Aviv A. Rosenberg, Sanketh Vedula, Yaniv Romano, Alexander M. Bronstein:
Fast Nonlinear Vector Quantile Regression. ICLR 2023 - [c20]Margaux Zaffran, Aymeric Dieuleveut, Julie Josse, Yaniv Romano:
Conformal Prediction with Missing Values. ICML 2023: 40578-40604 - [c19]Meshi Bashari, Amir Epstein, Yaniv Romano, Matteo Sesia:
Derandomized novelty detection with FDR control via conformal e-values. NeurIPS 2023 - 2022
- [c18]Asaf Gendler, Tsui-Wei Weng, Luca Daniel, Yaniv Romano:
Adversarially Robust Conformal Prediction. ICLR 2022 - [c17]Anastasios N. Angelopoulos, Amit Pal Singh Kohli, Stephen Bates, Michael I. Jordan, Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, Yaniv Romano:
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging. ICML 2022: 717-730 - [c16]Nitai Fingerhut, Matteo Sesia, Yaniv Romano:
Coordinated Double Machine Learning. ICML 2022: 6499-6513 - [c15]Meyer Scetbon, Laurent Meunier, Yaniv Romano:
An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings. ICML 2022: 19328-19346 - [c14]Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, Yanfei Zhou:
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning. NeurIPS 2022 - [c13]Swami Sankaranarayanan, Anastasios Angelopoulos, Stephen Bates, Yaniv Romano, Phillip Isola:
Semantic uncertainty intervals for disentangled latent spaces. NeurIPS 2022 - 2021
- [c12]Shai Feldman, Stephen Bates, Yaniv Romano:
Improving Conditional Coverage via Orthogonal Quantile Regression. NeurIPS 2021: 2060-2071 - [c11]Matteo Sesia, Yaniv Romano:
Conformal Prediction using Conditional Histograms. NeurIPS 2021: 6304-6315 - 2020
- [c10]Yaniv Romano, Stephen Bates, Emmanuel J. Candès:
Achieving Equalized Odds by Resampling Sensitive Attributes. NeurIPS 2020 - [c9]Yaniv Romano, Matteo Sesia, Emmanuel J. Candès:
Classification with Valid and Adaptive Coverage. NeurIPS 2020 - 2019
- [c8]Shahar Romem Peled, Yaniv Romano, Michael Elad:
SOS Boosting for Image Deblurring Algorithms. EUSIPCO 2019: 1-5 - [c7]Yaniv Romano, Evan Patterson, Emmanuel J. Candès:
Conformalized Quantile Regression. NeurIPS 2019: 3538-3548 - 2018
- [c6]Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad:
Projecting on to the Multi-Layer Convolutional Sparse Coding Model. ICASSP 2018: 6757-6761 - [c5]Yaniv Romano, Michael Elad, Peyman Milanfar:
RED-UCATION: A Novel CNN Architecture Based on Denoising Nonlinearities. ICASSP 2018: 6762-6766 - 2017
- [c4]Vardan Papyan, Yaniv Romano, Michael Elad, Jeremias Sulam:
Convolutional Dictionary Learning via Local Processing. ICCV 2017: 5306-5314 - 2016
- [c3]Alon Brifman, Yaniv Romano, Michael Elad:
Turning a denoiser into a super-resolver using plug and play priors. ICIP 2016: 1404-1408 - 2015
- [c2]Yaniv Romano, Michael Elad:
Patch-disagreement as away to improve K-SVD denoising. ICASSP 2015: 1280-1284 - 2013
- [c1]Yaniv Romano, Michael Elad:
Improving K-SVD denoising by post-processing its method-noise. ICIP 2013: 435-439
Informal and Other Publications
- 2024
- [i35]Liran Ringel, Regev Cohen, Daniel Freedman, Michael Elad, Yaniv Romano:
Early Time Classification with Accumulated Accuracy Gap Control. CoRR abs/2402.00857 (2024) - [i34]Ge Yan, Yaniv Romano, Tsui-Wei Weng:
Provably Robust Conformal Prediction with Improved Efficiency. CoRR abs/2404.19651 (2024) - [i33]Roy Maor Lotan, Inbal Talgam-Cohen, Yaniv Romano:
Strategy-Proof Auctions through Conformal Prediction. CoRR abs/2405.12016 (2024) - [i32]Shai Feldman, Yaniv Romano:
Robust Conformal Prediction Using Privileged Information. CoRR abs/2406.05405 (2024) - [i31]Nelson Goldenstein, Jeremias Sulam, Yaniv Romano:
Pivotal Auto-Encoder via Self-Normalizing ReLU. CoRR abs/2406.16052 (2024) - [i30]Yarin Bar, Shalev Shaer, Yaniv Romano:
Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach. CoRR abs/2408.07511 (2024) - 2023
- [i29]Hod Wirzberger, Assaf Kalinski, Idan Meirzada, Harel Primack, Yaniv Romano, Chene Tradonsky, Ruti Ben-Shlomi:
Lightsolver challenges a leading deep learning solver for Max-2-SAT problems. CoRR abs/2302.06926 (2023) - [i28]Meshi Bashari, Amir Epstein, Yaniv Romano, Matteo Sesia:
Derandomized Novelty Detection with FDR Control via Conformal E-values. CoRR abs/2302.07294 (2023) - [i27]Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, Michael Elad:
Principal Uncertainty Quantification with Spatial Correlation for Image Restoration Problems. CoRR abs/2305.10124 (2023) - [i26]Margaux Zaffran, Aymeric Dieuleveut, Julie Josse, Yaniv Romano:
Conformal Prediction with Missing Values. CoRR abs/2306.02732 (2023) - 2022
- [i25]Anastasios N. Angelopoulos, Amit P. S. Kohli, Stephen Bates, Michael I. Jordan, Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, Yaniv Romano:
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging. CoRR abs/2202.05265 (2022) - [i24]Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, Yanfei Zhou:
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning. CoRR abs/2205.05878 (2022) - [i23]Aviv A. Rosenberg, Sanketh Vedula, Yaniv Romano, Alex M. Bronstein:
Fast Nonlinear Vector Quantile Regression. CoRR abs/2205.14977 (2022) - [i22]Nitai Fingerhut, Matteo Sesia, Yaniv Romano:
Coordinated Double Machine Learning. CoRR abs/2206.00885 (2022) - [i21]Shalev Shaer, Yaniv Romano:
Learning to Increase the Power of Conditional Randomization Tests. CoRR abs/2207.01022 (2022) - [i20]Jacopo Teneggi, Beepul Bharti, Yaniv Romano, Jeremias Sulam:
From Shapley back to Pearson: Hypothesis Testing via the Shapley Value. CoRR abs/2207.07038 (2022) - [i19]Swami Sankaranarayanan, Anastasios N. Angelopoulos, Stephen Bates, Yaniv Romano, Phillip Isola:
Semantic uncertainty intervals for disentangled latent spaces. CoRR abs/2207.10074 (2022) - [i18]Bat-Sheva Einbinder, Stephen Bates, Anastasios N. Angelopoulos, Asaf Gendler, Yaniv Romano:
Conformal Prediction is Robust to Label Noise. CoRR abs/2209.14295 (2022) - 2021
- [i17]Shai Feldman, Stephen Bates, Yaniv Romano:
Improving Conditional Coverage via Orthogonal Quantile Regression. CoRR abs/2106.00394 (2021) - [i16]Shai Feldman, Stephen Bates, Yaniv Romano:
Calibrated Multiple-Output Quantile Regression with Representation Learning. CoRR abs/2110.00816 (2021) - [i15]Meyer Scetbon, Laurent Meunier, Yaniv Romano:
An 𝓁p-based Kernel Conditional Independence Test. CoRR abs/2110.14868 (2021) - 2020
- [i14]Yaniv Romano, Stephen Bates, Emmanuel J. Candès:
Achieving Equalized Odds by Resampling Sensitive Attributes. CoRR abs/2006.04292 (2020) - 2019
- [i13]Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, Emmanuel J. Candès:
With Malice Towards None: Assessing Uncertainty via Equalized Coverage. CoRR abs/1908.05428 (2019) - 2018
- [i12]Tao Hong, Yaniv Romano, Michael Elad:
Acceleration of RED via Vector Extrapolation. CoRR abs/1805.02158 (2018) - [i11]Yaniv Romano, Michael Elad:
Classification Stability for Sparse-Modeled Signals. CoRR abs/1805.11596 (2018) - [i10]Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu, Michael Elad:
Improving Pursuit Algorithms Using Stochastic Resonance. CoRR abs/1806.10171 (2018) - 2017
- [i9]Dmitry Batenkov, Yaniv Romano, Michael Elad:
On the Global-Local Dichotomy in Sparsity Modeling. CoRR abs/1702.03446 (2017) - [i8]Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad:
Convolutional Dictionary Learning via Local Processing. CoRR abs/1705.03239 (2017) - [i7]Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad:
Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning. CoRR abs/1708.08705 (2017) - 2016
- [i6]Yaniv Romano, Michael Elad:
Con-Patch: When a Patch Meets its Context. CoRR abs/1603.06812 (2016) - [i5]Yaniv Romano, John Isidoro, Peyman Milanfar:
RAISR: Rapid and Accurate Image Super Resolution. CoRR abs/1606.01299 (2016) - [i4]Vardan Papyan, Yaniv Romano, Michael Elad:
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding. CoRR abs/1607.08194 (2016) - [i3]Yi Ren, Yaniv Romano, Michael Elad:
Example-Based Image Synthesis via Randomized Patch-Matching. CoRR abs/1609.07370 (2016) - [i2]Yaniv Romano, Michael Elad, Peyman Milanfar:
The Little Engine that Could: Regularization by Denoising (RED). CoRR abs/1611.02862 (2016) - 2015
- [i1]Yaniv Romano, Michael Elad:
SOS Boosting of Image Denoising Algorithms. CoRR abs/1502.06220 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-25 00:45 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint