


default search action
Journal of Machine Learning Research, Volume 18
Volume 18, 2017
- Katsuhiko Ishiguro, Issei Sato, Naonori Ueda:

Averaged Collapsed Variational Bayes Inference. 1:1-1:29 - Nan Du, Yingyu Liang, Maria-Florina Balcan, Manuel Gomez-Rodriguez, Hongyuan Zha, Le Song:

Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks. 2:1-2:45 - Pranjal Awasthi, Maria-Florina Balcan, Konstantin Voevodski

:
Local algorithms for interactive clustering. 3:1-3:35 - David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosic, Stephen P. Boyd, Jure Leskovec:

SnapVX: A Network-Based Convex Optimization Solver. 4:1-4:5 - Jason D. Lee, Qiang Liu, Yuekai Sun, Jonathan E. Taylor:

Communication-efficient Sparse Regression. 5:1-5:30 - Jack Raymond, Federico Ricci-Tersenghi:

Improving Variational Methods via Pairwise Linear Response Identities. 6:1-6:36 - Adam S. Charles, Dong Yin, Christopher J. Rozell:

Distributed Sequence Memory of Multidimensional Inputs in Recurrent Networks. 7:1-7:37 - Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick D. Shipman, Sofya Chepushtanova, Eric M. Hanson, Francis C. Motta, Lori Ziegelmeier:

Persistence Images: A Stable Vector Representation of Persistent Homology. 8:1-8:35 - Ery Arias-Castro, Gilad Lerman, Teng Zhang:

Spectral Clustering Based on Local PCA. 9:1-9:57 - Yves F. Atchadé, Gersende Fort, Eric Moulines:

On Perturbed Proximal Gradient Algorithms. 10:1-10:33 - Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikaterini Mitrokotsa

, Benjamin I. P. Rubinstein:
Differential Privacy for Bayesian Inference through Posterior Sampling. 11:1-11:39 - Dae Il Kim, Benjamin F. Swanson, Michael C. Hughes, Erik B. Sudderth:

Refinery: An Open Source Topic Modeling Web Platform. 12:1-12:5 - Herbert Jaeger:

Using Conceptors to Manage Neural Long-Term Memories for Temporal Patterns. 13:1-13:43 - Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei:

Automatic Differentiation Variational Inference. 14:1-14:45 - Jacques Wainer, Gavin C. Cawley:

Empirical Evaluation of Resampling Procedures for Optimising SVM Hyperparameters. 15:1-15:35 - Naoki Ito, Akiko Takeda, Kim-Chuan Toh:

A Unified Formulation and Fast Accelerated Proximal Gradient Method for Classification. 16:1-16:49 - Guillaume Lemaitre, Fernando Nogueira, Christos K. Aridas:

Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. 17:1-17:5 - Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen:

Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. 18:1-18:65 - Francis R. Bach:

Breaking the Curse of Dimensionality with Convex Neural Networks. 19:1-19:53 - Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon:

Memory Efficient Kernel Approximation. 20:1-20:32 - Francis R. Bach:

On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions. 21:1-21:38 - Animashree Anandkumar, Rong Ge, Majid Janzamin:

Analyzing Tensor Power Method Dynamics in Overcomplete Regime. 22:1-22:40 - Edward Raff:

JSAT: Java Statistical Analysis Tool, a Library for Machine Learning. 23:1-23:5 - Daniel Nevo, Yaacov Ritov:

Identifying a Minimal Class of Models for High-dimensional Data. 24:1-24:29 - Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown:

Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. 25:1-25:5 - Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim Allan Wheeler, Jayesh K. Gupta, Mykel J. Kochenderfer:

POMDPs.jl: A Framework for Sequential Decision Making under Uncertainty. 26:1-26:5 - François Caron, Willie Neiswanger, Frank D. Wood, Arnaud Doucet, Manuel Davy:

Generalized Pólya Urn for Time-Varying Pitman-Yor Processes. 27:1-27:32 - Alexandre Bouchard-Côté, Arnaud Doucet, Andrew Roth:

Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models. 28:1-28:39 - Dimitris Bertsimas, Martin S. Copenhaver, Rahul Mazumder:

Certifiably Optimal Low Rank Factor Analysis. 29:1-29:53 - Yaohua Hu, Chong Li, Kaiwen Meng, Jing Qin, Xiaoqi Yang:

Group Sparse Optimization via lp, q Regularization. 30:1-30:52 - Ziyuan Gao, Christoph Ries, Hans Ulrich Simon, Sandra Zilles:

Preference-based Teaching. 31:1-31:32 - Daniel J. McDonald, Cosma Rohilla Shalizi, Mark J. Schervish:

Nonparametric Risk Bounds for Time-Series Forecasting. 32:1-32:40 - Tianlin Shi, Jun Zhu:

Online Bayesian Passive-Aggressive Learning. 33:1-33:39 - Jamshid Sourati, Murat Akçakaya, Todd K. Leen, Deniz Erdogmus, Jennifer G. Dy:

Asymptotic Analysis of Objectives Based on Fisher Information in Active Learning. 34:1-34:41 - Igor Melnyk, Arindam Banerjee:

A Spectral Algorithm for Inference in Hidden semi-Markov Models. 35:1-35:39 - Santtu Tikka, Juha Karvanen:

Simplifying Probabilistic Expressions in Causal Inference. 36:1-36:30 - Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch:

Nearly optimal classification for semimetrics. 37:1-37:22 - Elena Popovici:

Bridging Supervised Learning and Test-Based Co-optimization. 38:1-38:39 - Eemeli Leppäaho, Muhammad Ammad-ud-din, Samuel Kaski:

GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis. 39:1-39:5 - Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, James Hensman:

GPflow: A Gaussian Process Library using TensorFlow. 40:1-40:6 - Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha, Le Song:

COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Evolution. 41:1-41:49 - Guo Yu, Jacob Bien:

Learning Local Dependence In Ordered Data. 42:1-42:60 - Daniele Durante, Nabanita Mukherjee, Rebecca C. Steorts:

Bayesian Learning of Dynamic Multilayer Networks. 43:1-43:29 - Samory Kpotufe, Nakul Verma:

Time-Accuracy Tradeoffs in Kernel Prediction: Controlling Prediction Quality. 44:1-44:29 - Hanwen Huang:

Asymptotic behavior of Support Vector Machine for spiked population model. 45:1-45:21 - Xiangyu Chang, Shaobo Lin, Ding-Xuan Zhou:

Distributed Semi-supervised Learning with Kernel Ridge Regression. 46:1-46:22 - Rémi Bardenet, Arnaud Doucet, Christopher C. Holmes:

On Markov chain Monte Carlo methods for tall data. 47:1-47:43 - Abraham J. Wyner, Matthew Olson, Justin Bleich, David Mease:

Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers. 48:1-48:33 - Shiau Hong Lim, Yudong Chen, Huan Xu:

Clustering from General Pairwise Observations with Applications to Time-varying Graphs. 49:1-49:47 - Debarghya Ghoshdastidar, Ambedkar Dukkipati:

Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques. 50:1-50:41 - Yohann de Castro, Thibault Espinasse, Paul Rochet:

Reconstructing Undirected Graphs from Eigenspaces. 51:1-51:24 - Ohad Shamir:

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback. 52:1-52:11 - Adel Javanmard:

Perishability of Data: Dynamic Pricing under Varying-Coefficient Models. 53:1-53:31 - Mehmet Eren Ahsen, Niharika Challapalli, Mathukumalli Vidyasagar:

Two New Approaches to Compressed Sensing Exhibiting Both Robust Sparse Recovery and the Grouping Effect. 54:1-54:24 - Fabian Pedregosa, Francis R. Bach, Alexandre Gramfort:

On the Consistency of Ordinal Regression Methods. 55:1-55:35 - Takashi Takenouchi, Takafumi Kanamori:

Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences. 56:1-56:26 - Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, Revant Kumar:

Density Estimation in Infinite Dimensional Exponential Families. 57:1-57:59 - Matthäus Kleindessner, Ulrike von Luxburg:

Lens Depth Function and k-Relative Neighborhood Graph: Versatile Tools for Ordinal Data Analysis. 58:1-58:52 - Deepayan Chakrabarti, Stanislav Funiak, Jonathan Chang, Sofus A. Macskassy:

Joint Label Inference in Networks. 59:1-59:39 - Chao Gao, Zongming Ma, Anderson Y. Zhang, Harrison H. Zhou:

Achieving Optimal Misclassification Proportion in Stochastic Block Models. 60:1-60:45 - Prakash Balachandran, Eric D. Kolaczyk, Weston D. Viles:

On the Propagation of Low-Rate Measurement Error to Subgraph Counts in Large Networks. 61:1-61:33 - Yannis Papanikolaou, James R. Foulds, Timothy N. Rubin, Grigorios Tsoumakas:

Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA. 62:1-62:58 - Morteza Ashraphijuo, Xiaodong Wang:

Fundamental Conditions for Low-CP-Rank Tensor Completion. 63:1-63:29 - An C. Tran, Jens Dietrich, Hans W. Guesgen, Stephen Marsland:

Parallel Symmetric Class Expression Learning. 64:1-64:34 - Jervis Pinto, Alan Fern:

Learning Partial Policies to Speedup MDP Tree Search via Reduction to I.I.D. Learning. 65:1-65:35 - Jie Chen, Haim Avron

, Vikas Sindhwani:
Hierarchically Compositional Kernels for Scalable Nonparametric Learning. 66:1-66:42 - Benjamin Stucky, Sara A. van de Geer:

Sharp Oracle Inequalities for Square Root Regularization. 67:1-67:29 - Matthew Norton, Alexander Mafusalov, Stan Uryasev:

Soft Margin Support Vector Classification as Buffered Probability Minimization. 68:1-68:43 - Ardavan Saeedi, Tejas D. Kulkarni, Vikash K. Mansinghka, Samuel J. Gershman:

Variational Particle Approximations. 69:1-69:29 - Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, Perry MacNeille:

A Bayesian Framework for Learning Rule Sets for Interpretable Classification. 70:1-70:37 - A. Adam Ding, Jennifer G. Dy, Yi Li, Yale Chang:

A Robust-Equitable Measure for Feature Ranking and Selection. 71:1-71:46 - Samuel Gerber, Mauro Maggioni:

Multiscale Strategies for Computing Optimal Transport. 72:1-72:32 - Herke van Hoof, Gerhard Neumann, Jan Peters:

Non-parametric Policy Search with Limited Information Loss. 73:1-73:46 - Martin Bilodeau, Aurélien Guetsop Nangue:

Tests of Mutual or Serial Independence of Random Vectors with Applications. 74:1-74:40 - Abhisek Kundu, Petros Drineas

, Malik Magdon-Ismail:
Recovering PCA and Sparse PCA via Hybrid-(l1, l2) Sparse Sampling of Data Elements. 75:1-75:34 - Austin J. Brockmeier, Tingting Mu, Sophia Ananiadou, John Yannis Goulermas:

Quantifying the Informativeness of Similarity Measurements. 76:1-76:61 - David Martínez Martínez, Guillem Alenyà, Tony Ribeiro, Katsumi Inoue, Carme Torras:

Relational Reinforcement Learning for Planning with Exogenous Effects. 78:1-78:44 - Rajarshi Guhaniyogi, Shaan Qamar, David B. Dunson:

Bayesian Tensor Regression. 79:1-79:31 - Nicolas Flammarion, Balamurugan Palaniappan, Francis R. Bach:

Robust Discriminative Clustering with Sparse Regularizers. 80:1-80:50 - Weiwei Liu, Ivor W. Tsang

:
Making Decision Trees Feasible in Ultrahigh Feature and Label Dimensions. 81:1-81:36 - Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, Eric P. Xing:

Learning Scalable Deep Kernels with Recurrent Structure. 82:1-82:37 - Vardan Papyan, Yaniv Romano, Michael Elad:

Convolutional Neural Networks Analyzed via Convolutional Sparse Coding. 83:1-83:52 - Yuchen Zhang, Lin Xiao:

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization. 84:1-84:42 - Hui Sun, Bruce A. Craig, Lingsong Zhang:

Angle-based Multicategory Distance-weighted SVM. 85:1-85:21 - Ilya O. Tolstikhin, Bharath K. Sriperumbudur, Krikamol Muandet:

Minimax Estimation of Kernel Mean Embeddings. 86:1-86:47 - Alexander J. Gates, Yong-Yeol Ahn:

The Impact of Random Models on Clustering Similarity. 87:1-87:28 - Aurko Roy, Sebastian Pokutta:

Hierarchical Clustering via Spreading Metrics. 88:1-88:35 - Frans A. Oliehoek, Matthijs T. J. Spaan, Bas Terwijn, Philipp Robbel, João V. Messias:

The MADP Toolbox: An Open Source Library for Planning and Learning in (Multi-)Agent Systems. 89:1-89:5 - H. Brendan McMahan:

A survey of Algorithms and Analysis for Adaptive Online Learning. 90:1-90:50 - Dhruv Mahajan, S. Sathiya Keerthi, S. Sundararajan:

A distributed block coordinate descent method for training l1 regularized linear classifiers. 91:1-91:35 - Shaobo Lin, Xin Guo, Ding-Xuan Zhou:

Distributed Learning with Regularized Least Squares. 92:1-92:31 - Srikanth Jagabathula, Lakshminarayanan Subramanian, Ashwin Venkataraman:

Identifying Unreliable and Adversarial Workers in Crowdsourced Labeling Tasks. 93:1-93:67 - Weiwei Liu, Ivor W. Tsang

, Klaus-Robert Müller:
An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels. 94:1-94:38 - Dirk Tasche:

Fisher Consistency for Prior Probability Shift. 95:1-95:32 - Maximilian Schmitt, Björn W. Schuller:

openXBOW - Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit. 96:1-96:5 - Junhong Lin, Lorenzo Rosasco:

Optimal Rates for Multi-pass Stochastic Gradient Methods. 97:1-97:47 - Morteza Ashraphijuo, Xiaodong Wang, Vaneet Aggarwal:

Rank Determination for Low-Rank Data Completion. 98:1-98:29 - Young Woong Park, Diego Klabjan:

Bayesian Network Learning via Topological Order. 99:1-99:32 - Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Jan Peters:

Stability of Controllers for Gaussian Process Dynamics. 100:1-100:37 - Aymeric Dieuleveut, Nicolas Flammarion, Francis R. Bach:

Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. 101:1-101:51 - Christophe Denis, Mohamed Hebiri:

Confidence Sets with Expected Sizes for Multiclass Classification. 102:1-102:28 - Sougata Chaudhuri, Ambuj Tewari:

Online Learning to Rank with Top-k Feedback. 103:1-103:50 - Thang D. Bui, Josiah Yan, Richard E. Turner:

A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation. 104:1-104:72 - Mengdi Wang, Ji Liu, Ethan X. Fang:

Accelerating Stochastic Composition Optimization. 105:1-105:23 - Leonard Hasenclever, Stefan Webb, Thibaut Liénart, Sebastian J. Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh:

Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server. 106:1-106:37 - Mohammed Rayyan Sheriff, Debasish Chatterjee:

Optimal Dictionary for Least Squares Representation. 107:1-107:28 - Zuofeng Shang, Guang Cheng:

Computational Limits of A Distributed Algorithm for Smoothing Spline. 108:1-108:37 - Stephen H. Bach, Matthias Broecheler, Bert Huang, Lise Getoor:

Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. 109:1-109:67 - Lin Lin

, Jia Li:
Clustering with Hidden Markov Model on Variable Blocks. 110:1-110:49 - Trung Le, Tu Dinh Nguyen, Vu Nguyen, Dinh Q. Phung:

Approximation Vector Machines for Large-scale Online Learning. 111:1-111:55 - Hariharan Narayanan, Alexander Rakhlin:

Efficient Sampling from Time-Varying Log-Concave Distributions. 112:1-112:29 - Stanislas Lauly, Yin Zheng, Alexandre Allauzen, Hugo Larochelle:

Document Neural Autoregressive Distribution Estimation. 113:1-113:24 - Shannon Fenn, Pablo Moscato:

Target Curricula via Selection of Minimum Feature Sets: a Case Study in Boolean Networks. 114:1-114:26 - Shun Zheng, Jialei Wang, Fen Xia, Wei Xu, Tong Zhang:

A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization. 115:1-115:52 - Naman Agarwal, Brian Bullins, Elad Hazan:

Second-Order Stochastic Optimization for Machine Learning in Linear Time. 116:1-116:40 - Jiahe Lin, George Michailidis:

Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models. 117:1-117:49 - Zheng-Chu Guo, Lei Shi, Qiang Wu:

Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network. 118:1-118:25 - Maren Mahsereci, Philipp Hennig:

Probabilistic Line Searches for Stochastic Optimization. 119:1-119:59 - Ricardo Silva, Shohei Shimizu:

Learning Instrumental Variables with Structural and Non-Gaussianity Assumptions. 120:1-120:49 - Mathieu Guillame-Bert, Artur Dubrawski:

Classification of Time Sequences using Graphs of Temporal Constraints. 121:1-121:34 - Jason D. Lee, Qihang Lin, Tengyu Ma, Tianbao Yang:

Distributed Stochastic Variance Reduced Gradient Methods by Sampling Extra Data with Replacement. 122:1-122:43 - Marco Singer, Tatyana Krivobokova, Axel Munk:

Kernel Partial Least Squares for Stationary Data. 123:1-123:41 - Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, David B. Dunson:

Robust and Scalable Bayes via a Median of Subset Posterior Measures. 124:1-124:40 - Fanny Yang, Sivaraman Balakrishnan, Martin J. Wainwright:

Statistical and Computational Guarantees for the Baum-Welch Algorithm. 125:1-125:53 - Christophe Dupuy, Francis R. Bach:

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling. 126:1-126:45 - Valerio Perrone, Paul A. Jenkins, Dario Spanò, Yee Whye Teh:

Poisson Random Fields for Dynamic Feature Models. 127:1-127:45 - Eugène Ndiaye, Olivier Fercoq, Alexandre Gramfort, Joseph Salmon:

Gap Safe Screening Rules for Sparsity Enforcing Penalties. 128:1-128:33 - Jihun Hamm:

Minimax Filter: Learning to Preserve Privacy from Inference Attacks. 129:1-129:31 - Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, Guillaume Bouchard:

Knowledge Graph Completion via Complex Tensor Factorization. 130:1-130:38 - Yuting Ma, Tian Zheng:

Stabilized Sparse Online Learning for Sparse Data. 131:1-131:36 - K. S. Sesh Kumar, Francis R. Bach:

Active-set Methods for Submodular Minimization Problems. 132:1-132:31 - Jean-Baptiste Schiratti, Stéphanie Allassonnière, Olivier Colliot, Stanley Durrleman:

A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations. 133:1-133:33 - Stephan Mandt, Matthew D. Hoffman, David M. Blei:

Stochastic Gradient Descent as Approximate Bayesian Inference. 134:1-134:35 - Will Wei Sun, Lexin Li:

STORE: Sparse Tensor Response Regression and Neuroimaging Analysis. 135:1-135:37 - Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz:

A Survey of Preference-Based Reinforcement Learning Methods. 136:1-136:46 - Jérémie Bigot, Charles Deledalle, Delphine Féral:

Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising. 137:1-137:50 - Paulo Serra, Michel Mandjes:

Dimension Estimation Using Random Connection Models. 138:1-138:35 - Michael Riis Andersen, Aki Vehtari, Ole Winther, Lars Kai Hansen

:
Bayesian Inference for Spatio-temporal Spike-and-Slab Priors. 139:1-139:58 - Gregory Darnell, Stoyan Georgiev, Sayan Mukherjee, Barbara E. Engelhardt:

Adaptive Randomized Dimension Reduction on Massive Data. 140:1-140:30 - Huishuai Zhang, Yingbin Liang, Yuejie Chi:

A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms. 141:1-141:35 - Pietro Coretto, Christian Hennig:

Consistency, Breakdown Robustness, and Algorithms for Robust Improper Maximum Likelihood Clustering. 142:1-142:39 - Yining Wang, Adams Wei Yu, Aarti Singh:

On Computationally Tractable Selection of Experiments in Measurement-Constrained Regression Models. 143:1-143:41 - Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:

Generalized Conditional Gradient for Sparse Estimation. 144:1-144:46 - Ruitong Huang, Tor Lattimore, András György, Csaba Szepesvári:

Following the Leader and Fast Rates in Online Linear Prediction: Curved Constraint Sets and Other Regularities. 145:1-145:31 - Guillaume Lecué, Shahar Mendelson:

Regularization and the small-ball method II: complexity dependent error rates. 146:1-146:48 - Raymond K. W. Wong, Thomas C. M. Lee:

Matrix Completion with Noisy Entries and Outliers. 147:1-147:25 - Kayvan Sadeghi:

Faithfulness of Probability Distributions and Graphs. 148:1-148:29 - James D. Wilson, John Palowitch, Shankar Bhamidi, Andrew B. Nobel:

Community Extraction in Multilayer Networks with Heterogeneous Community Structure. 149:1-149:49 - Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao Gong, Shih-Fu Chang:

On Binary Embedding using Circulant Matrices. 150:1-150:30 - James Hensman, Nicolas Durrande, Arno Solin:

Variational Fourier Features for Gaussian Processes. 151:1-151:52 - Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, Jeremy R. Manning:

HyperTools: a Python Toolbox for Gaining Geometric Insights into High-Dimensional Data. 152:1-152:6 - Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, Jeffrey Mark Siskind:

Automatic Differentiation in Machine Learning: a Survey. 153:1-153:43 - Wesley Cowan, Junya Honda, Michael N. Katehakis:

Normal Bandits of Unknown Means and Variances. 154:1-154:28 - Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:

Cost-Sensitive Learning with Noisy Labels. 155:1-155:33 - Yining Wang, Aarti Singh:

Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data. 156:1-156:42 - Elif Vural, Christine Guillemot:

A Study of the Classification of Low-Dimensional Data with Supervised Manifold Learning. 157:1-157:55 - Valeria Vitelli, Øystein Sørensen, Marta Crispino, Arnoldo Frigessi, Elja Arjas:

Probabilistic preference learning with the Mallows rank model. 158:1-158:49 - Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Larry A. Wasserman:

Robust Topological Inference: Distance To a Measure and Kernel Distance. 159:1-159:40 - Mario Lucic, Matthew Faulkner, Andreas Krause

, Dan Feldman:
Training Gaussian Mixture Models at Scale via Coresets. 160:1-160:25 - Vivek S. Borkar, Vikranth Reddy Dwaracherla, Neeraja Sahasrabudhe:

Gradient Estimation with Simultaneous Perturbation and Compressive Sensing. 161:1-161:27 - Clint P. George, Hani Doss:

Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model. 162:1-162:38 - Alan Morningstar, Roger G. Melko:

Deep Learning the Ising Model Near Criticality. 163:1-163:17 - Jacob Schreiber:

pomegranate: Fast and Flexible Probabilistic Modeling in Python. 164:1-164:6 - Qianxiao Li, Long Chen, Cheng Tai, Weinan E:

Maximum Principle Based Algorithms for Deep Learning. 165:1-165:29 - Xiao-Tong Yuan, Ping Li, Tong Zhang:

Gradient Hard Thresholding Pursuit. 166:1-166:43 - Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, Marco Pavone:

Risk-Constrained Reinforcement Learning with Percentile Risk Criteria. 167:1-167:51 - Siqi Wu, Bin Yu:

Local Identifiability of $\ell_1$-minimization Dictionary Learning: a Sufficient and Almost Necessary Condition. 168:1-168:56 - Fred Morstatter, Huan Liu:

In Search of Coherence and Consensus: Measuring the Interpretability of Statistical Topics. 169:1-169:32 - Fabrizio Angiulli:

On the Behavior of Intrinsically High-Dimensional Spaces: Distances, Direct and Reverse Nearest Neighbors, and Hubness. 170:1-170:60 - Yunwen Lei, Lei Shi, Zheng-Chu Guo:

Convergence of Unregularized Online Learning Algorithms. 171:1-171:33 - Jian Du, Shaodan Ma, Yik-Chung Wu, Soummya Kar, José M. F. Moura:

Convergence Analysis of Distributed Inference with Vector-Valued Gaussian Belief Propagation. 172:1-172:38 - Michael Freitag, Shahin Amiriparian, Sergey Pugachevskiy, Nicholas Cummins, Björn W. Schuller:

auDeep: Unsupervised Learning of Representations from Audio with Deep Recurrent Neural Networks. 173:1-173:5 - Sarah Nogueira, Konstantinos Sechidis, Gavin Brown:

On the Stability of Feature Selection Algorithms. 174:1-174:54 - Christopher Tosh, Sanjoy Dasgupta:

Maximum Likelihood Estimation for Mixtures of Spherical Gaussians is NP-hard. 175:1-175:11 - Oscar Hernan Madrid Padilla, James Sharpnack, James G. Scott, Ryan J. Tibshirani:

The DFS Fused Lasso: Linear-Time Denoising over General Graphs. 176:1-176:36 - Emmanuel Abbe:

Community Detection and Stochastic Block Models: Recent Developments. 177:1-177:86 - Rajen Dinesh Shah, Nicolai Meinshausen:

On $b$-bit Min-wise Hashing for Large-scale Regression and Classification with Sparse Data. 178:1-178:42 - Quanming Yao, James T. Kwok:

Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity. 179:1-179:52 - Hiroaki Sasaki, Takafumi Kanamori, Aapo Hyvärinen, Gang Niu, Masashi Sugiyama:

Mode-Seeking Clustering and Density Ridge Estimation via Direct Estimation of Density-Derivative-Ratios. 180:1-180:47 - Philipp Probst, Anne-Laure Boulesteix:

To Tune or Not to Tune the Number of Trees in Random Forest. 181:1-181:18 - Heng Lian, Zengyan Fan:

Divide-and-Conquer for Debiased $l_1$-norm Support Vector Machine in Ultra-high Dimensions. 182:1-182:26 - Zifan Li, Ambuj Tewari:

Beyond the Hazard Rate: More Perturbation Algorithms for Adversarial Multi-armed Bandits. 183:1-183:24 - Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:

On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. 184:1-184:24 - Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar:

Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. 185:1-185:52 - Bruce E. Hajek, Yihong Wu, Jiaming Xu:

Submatrix localization via message passing. 186:1-186:52 - Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio:

Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations. 187:1-187:30 - John Palowitch, Shankar Bhamidi, Andrew B. Nobel:

Significance-based community detection in weighted networks. 188:1-188:48 - Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka:

Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor. 189:1-189:41 - Benjamin Guedj, Bhargav Srinivasa Desikan:

Pycobra: A Python Toolbox for Ensemble Learning and Visualisation. 190:1-190:5 - Simone Filice, Giuseppe Castellucci, Giovanni Da San Martino, Alessandro Moschitti, Danilo Croce, Roberto Basili:

KELP: a Kernel-based Learning Platform. 191:1-191:5 - Massil Achab, Emmanuel Bacry, Stéphane Gaïffas, Iacopo Mastromatteo, Jean-François Muzy:

Uncovering Causality from Multivariate Hawkes Integrated Cumulants. 192:1-192:28 - Jennifer Wortman Vaughan:

Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research. 193:1-193:46 - Santtu Tikka, Juha Karvanen:

Enhancing Identification of Causal Effects by Pruning. 194:1-194:23 - Aryeh Kontorovich, Sivan Sabato, Ruth Urner:

Active Nearest-Neighbor Learning in Metric Spaces. 195:1-195:38 - Dimitris Bertsimas, Colin Pawlowski, Ying Daisy Zhuo:

From Predictive Methods to Missing Data Imputation: An Optimization Approach. 196:1-196:39 - Nicholas Boyd, Trevor Hastie, Stephen P. Boyd, Benjamin Recht, Michael I. Jordan:

Saturating Splines and Feature Selection. 197:1-197:32 - Andrei Patrascu, Ion Necoara:

Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization. 198:1-198:42 - Nihar B. Shah, Martin J. Wainwright:

Simple, Robust and Optimal Ranking from Pairwise Comparisons. 199:1-199:38 - David P. Helmbold, Philip M. Long:

Surprising properties of dropout in deep networks. 200:1-200:28 - Boris Konev, Carsten Lutz, Ana Ozaki, Frank Wolter:

Exact Learning of Lightweight Description Logic Ontologies. 201:1-201:63 - Shuhan Liang, Wenbin Lu, Rui Song, Lan Wang:

Sparse Concordance-assisted Learning for Optimal Treatment Decision. 202:1-202:26 - Junwei Lu, Mladen Kolar, Han Liu:

Post-Regularization Inference for Time-Varying Nonparanormal Graphical Models. 203:1-203:78 - Quan Zhang, Mingyuan Zhou

:
Permuted and Augmented Stick-Breaking Bayesian Multinomial Regression. 204:1-204:33 - Ali Zarezade, Abir De, Utkarsh Upadhyay, Hamid R. Rabiee, Manuel Gomez-Rodriguez:

Steering Social Activity: A Stochastic Optimal Control Point Of View. 205:1-205:35 - Avik Ray, Joe Neeman, Sujay Sanghavi, Sanjay Shakkottai:

The Search Problem in Mixture Models. 206:1-206:61 - Jianqing Fan, Weichen Wang, Yiqiao Zhong:

An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application. 207:1-207:42 - Jie Shen, Ping Li:

A Tight Bound of Hard Thresholding. 208:1-208:42 - Davoud Ataee Tarzanagh, George Michailidis:

Estimation of Graphical Models through Structured Norm Minimization. 209:1-209:48 - Christian Borgs, Jennifer T. Chayes, Henry Cohn, Nina Holden:

Sparse Exchangeable Graphs and Their Limits via Graphon Processes. 210:1-210:71 - Jiyan Yang, Yin-Lam Chow, Christopher Ré, Michael W. Mahoney:

Weighted SGD for $\ell_p$ Regression with Randomized Preconditioning. 211:1-211:43 - Hongzhou Lin, Julien Mairal, Zaïd Harchaoui:

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice. 212:1-212:54 - Amichai Painsky, Naftali Tishby:

Gaussian Lower Bound for the Information Bottleneck Limit. 213:1-213:29 - Emmanuel Bacry, Martin Bompaire, Philip Deegan, Stéphane Gaïffas, Søren Poulsen:

tick: a Python Library for Statistical Learning, with an emphasis on Hawkes Processes and Time-Dependent Models. 214:1-214:5 - Hiroyuki Kasai:

SGDLibrary: A MATLAB library for stochastic optimization algorithms. 215:1-215:5 - Swapna Buccapatnam, Fang Liu, Atilla Eryilmaz, Ness B. Shroff:

Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks. 216:1-216:34 - Botao Hao, Will Wei Sun, Yufeng Liu, Guang Cheng:

Simultaneous Clustering and Estimation of Heterogeneous Graphical Models. 217:1-217:58 - Shusen Wang, Alex Gittens, Michael W. Mahoney:

Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging. 218:1-218:50 - Steffen Grünewälder:

Compact Convex Projections. 219:1-219:43 - Emilija Perkovic, Johannes Textor, Markus Kalisch, Marloes H. Maathuis:

Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs. 220:1-220:62 - Zeyuan Allen-Zhu:

Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. 221:1-221:51 - Alon Gonen, Shai Shalev-Shwartz:

Average Stability is Invariant to Data Preconditioning. Implications to Exp-concave Empirical Risk Minimization. 222:1-222:13 - Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford:

Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification. 223:1-223:42 - Gunwoong Park, Garvesh Raskutti:

Learning Quadratic Variance Function (QVF) DAG Models via OverDispersion Scoring (ODS). 224:1-224:44 - Hafiz Tiomoko Ali, Romain Couillet:

Improved spectral community detection in large heterogeneous networks. 225:1-225:49 - Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, Keith D. Levin, Vince Lyzinski, Yichen Qin, Daniel L. Sussman:

Statistical Inference on Random Dot Product Graphs: a Survey. 226:1-226:92 - Maik Döring, László Györfi, Harro Walk:

Rate of Convergence of $k$-Nearest-Neighbor Classification Rule. 227:1-227:16 - Brendan van Rooyen, Robert C. Williamson:

A Theory of Learning with Corrupted Labels. 228:1-228:50 - Sivan Sabato, Tom Hess:

Interactive Algorithms: Pool, Stream and Precognitive Stream. 229:1-229:39 - Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:

CoCoA: A General Framework for Communication-Efficient Distributed Optimization. 230:1-230:49 - Likai Chen, Wei Biao Wu:

Concentration inequalities for empirical processes of linear time series. 231:1-231:46 - Bradley S. Price, Ben Sherwood:

A Cluster Elastic Net for Multivariate Regression. 232:1-232:39 - Zoltán Szabó, Bharath K. Sriperumbudur:

Characteristic and Universal Tensor Product Kernels. 233:1-233:29 - Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo I. Seltzer, Cynthia Rudin:

Learning Certifiably Optimal Rule Lists for Categorical Data. 234:1-234:78

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














