default search action
Lingjuan Lyu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j33]Rui Song, Liguo Zhou, Lingjuan Lyu, Andreas Festag, Alois Knoll:
ResFed: Communication0Efficient Federated Learning With Deep Compressed Residuals. IEEE Internet Things J. 11(6): 9458-9472 (2024) - [j32]Chen Chen, Lingjuan Lyu, Han Yu, Gang Chen:
Practical Attribute Reconstruction Attack Against Federated Learning. IEEE Trans. Big Data 10(6): 851-863 (2024) - [j31]Zhuan Shi, Lan Zhang, Zhenyu Yao, Lingjuan Lyu, Cen Chen, Li Wang, Junhao Wang, Xiang-Yang Li:
FedFAIM: A Model Performance-Based Fair Incentive Mechanism for Federated Learning. IEEE Trans. Big Data 10(6): 1038-1050 (2024) - [j30]Zhihua Tian, Rui Zhang, Xiaoyang Hou, Lingjuan Lyu, Tianyi Zhang, Jian Liu, Kui Ren:
${\sf FederBoost}$: Private Federated Learning for GBDT. IEEE Trans. Dependable Secur. Comput. 21(3): 1274-1285 (2024) - [j29]Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang Yang, Philip S. Yu:
Privacy and Robustness in Federated Learning: Attacks and Defenses. IEEE Trans. Neural Networks Learn. Syst. 35(7): 8726-8746 (2024) - [c91]Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu:
FedMef: Towards Memory-Efficient Federated Dynamic Pruning. CVPR 2024: 27538-27547 - [c90]Minzhou Pan, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin:
Finding Needles in a Haystack: A Black-Box Approach to Invisible Watermark Detection. ECCV (33) 2024: 253-270 - [c89]Jie Ren, Yaxin Li, Shenglai Zeng, Han Xu, Lingjuan Lyu, Yue Xing, Jiliang Tang:
Unveiling and Mitigating Memorization in Text-to-Image Diffusion Models Through Cross Attention. ECCV (77) 2024: 340-356 - [c88]Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, Shiqing Ma:
DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models. ICLR 2024 - [c87]Yuxin Wen, Yuchen Liu, Chen Chen, Lingjuan Lyu:
Detecting, Explaining, and Mitigating Memorization in Diffusion Models. ICLR 2024 - [c86]Kai Yi, Nidham Gazagnadou, Peter Richtárik, Lingjuan Lyu:
FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity. ICLR 2024 - [c85]Weiming Zhuang, Lingjuan Lyu:
FedWon: Triumphing Multi-domain Federated Learning Without Normalization. ICLR 2024 - [c84]Yang Zhou, Zijie Zhang, Zeru Zhang, Lingjuan Lyu, Wei-Shinn Ku:
Effective Federated Graph Matching. ICML 2024 - [c83]Jiaqi Wang, Chenxu Zhao, Lingjuan Lyu, Quanzeng You, Mengdi Huai, Fenglong Ma:
Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity Learning. ICML 2024 - [c82]Kartik Patwari, Chen-Nee Chuah, Lingjuan Lyu, Vivek Sharma:
PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR. ICML 2024 - [c81]Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, Shiqing Ma:
How to Trace Latent Generative Model Generated Images without Artificial Watermark? ICML 2024 - [c80]Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu:
COALA: A Practical and Vision-Centric Federated Learning Platform. ICML 2024 - [c79]Fei Zheng, Chaochao Chen, Lingjuan Lyu, Xinyi Fu, Xing Fu, Weiqiang Wang, Xiaolin Zheng, Jianwei Yin:
Protecting Split Learning by Potential Energy Loss. IJCAI 2024: 5590-5598 - [c78]Zihui Wang, Zheng Wang, Lingjuan Lyu, Zhaopeng Peng, Zhicheng Yang, Chenglu Wen, Rongshan Yu, Cheng Wang, Xiaoliang Fan:
FedSAC: Dynamic Submodel Allocation for Collaborative Fairness in Federated Learning. KDD 2024: 3299-3310 - [c77]Shuai Zhao, Leilei Gan, Anh Tuan Luu, Jie Fu, Lingjuan Lyu, Meihuizi Jia, Jinming Wen:
Defending Against Weight-Poisoning Backdoor Attacks for Parameter-Efficient Fine-Tuning. NAACL-HLT (Findings) 2024: 3421-3438 - [c76]Xukun Zhou, Jiwei Li, Tianwei Zhang, Lingjuan Lyu, Muqiao Yang, Jun He:
Backdoor Attacks with Input-Unique Triggers in NLP. ECML/PKDD (1) 2024: 296-312 - [c75]Yuanxin Zhuang, Chuan Shi, Mengmei Zhang, Jinghui Chen, Lingjuan Lyu, Pan Zhou, Lichao Sun:
Unveiling the Secrets without Data: Can Graph Neural Networks Be Exploited through Data-Free Model Extraction Attacks? USENIX Security Symposium 2024 - [i107]Shuai Zhao, Leilei Gan, Luu Anh Tuan, Jie Fu, Lingjuan Lyu, Meihuizi Jia, Jinming Wen:
Defending Against Weight-Poisoning Backdoor Attacks for Parameter-Efficient Fine-Tuning. CoRR abs/2402.12168 (2024) - [i106]Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, Junping Du:
Minimum Topology Attacks for Graph Neural Networks. CoRR abs/2403.02723 (2024) - [i105]Jie Ren, Yaxin Li, Shenglai Zeng, Han Xu, Lingjuan Lyu, Yue Xing, Jiliang Tang:
Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention. CoRR abs/2403.11052 (2024) - [i104]Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu:
FedMef: Towards Memory-efficient Federated Dynamic Pruning. CoRR abs/2403.14737 (2024) - [i103]Minzhou Pan, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin:
Finding needles in a haystack: A Black-Box Approach to Invisible Watermark Detection. CoRR abs/2403.15955 (2024) - [i102]Yuhang Li, Xin Dong, Chen Chen, Jingtao Li, Yuxin Wen, Michael Spranger, Lingjuan Lyu:
Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization. CoRR abs/2403.19866 (2024) - [i101]Kai Yi, Nidham Gazagnadou, Peter Richtárik, Lingjuan Lyu:
FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity. CoRR abs/2404.09816 (2024) - [i100]Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, Shiqing Ma:
How to Trace Latent Generative Model Generated Images without Artificial Watermark? CoRR abs/2405.13360 (2024) - [i99]Zihui Wang, Zheng Wang, Lingjuan Lyu, Zhaopeng Peng, Zhicheng Yang, Chenglu Wen, Rongshan Yu, Cheng Wang, Xiaoliang Fan:
FedSAC: Dynamic Submodel Allocation for Collaborative Fairness in Federated Learning. CoRR abs/2405.18291 (2024) - [i98]Ziqing Fan, Jiangchao Yao, Ruipeng Zhang, Lingjuan Lyu, Ya Zhang, Yanfeng Wang:
Federated Learning under Partially Class-Disjoint Data via Manifold Reshaping. CoRR abs/2405.18983 (2024) - [i97]Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan, Lingjuan Lyu:
Evaluating and Mitigating IP Infringement in Visual Generative AI. CoRR abs/2406.04662 (2024) - [i96]Wenxiao Wang, Weiming Zhuang, Lingjuan Lyu:
Towards Fundamentally Scalable Model Selection: Asymptotically Fast Update and Selection. CoRR abs/2406.07536 (2024) - [i95]Jie Ren, Yingqian Cui, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu:
EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations. CoRR abs/2406.13933 (2024) - [i94]Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu:
Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models. CoRR abs/2406.14855 (2024) - [i93]Jiaqi Wang, Chenxu Zhao, Lingjuan Lyu, Quanzeng You, Mengdi Huai, Fenglong Ma:
Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity Learning. CoRR abs/2407.03247 (2024) - [i92]Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, Lingjuan Lyu:
Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget. CoRR abs/2407.15811 (2024) - [i91]Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu:
COALA: A Practical and Vision-Centric Federated Learning Platform. CoRR abs/2407.16560 (2024) - [i90]Yuxin Wen, Yuchen Liu, Chen Chen, Lingjuan Lyu:
Detecting, Explaining, and Mitigating Memorization in Diffusion Models. CoRR abs/2407.21720 (2024) - [i89]Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu:
A Simple Background Augmentation Method for Object Detection with Diffusion Model. CoRR abs/2408.00350 (2024) - [i88]Jiaqi Wang, Xiaochen Wang, Lingjuan Lyu, Jinghui Chen, Fenglong Ma:
FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection. CoRR abs/2408.09227 (2024) - [i87]Chaochao Chen, Jiaming Zhang, Yizhao Zhang, Li Zhang, Lingjuan Lyu, Yuyuan Li, Biao Gong, Chenggang Yan:
CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence. CoRR abs/2408.14393 (2024) - [i86]Zhuan Shi, Jing Yan, Xiaoli Tang, Lingjuan Lyu, Boi Faltings:
RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model. CoRR abs/2408.16634 (2024) - [i85]Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, Ang Li:
FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations. CoRR abs/2409.05976 (2024) - [i84]Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu:
Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Models. CoRR abs/2410.13088 (2024) - [i83]David Schneider, Sina Sajadmanesh, Vikash Sehwag, M. Saquib Sarfraz, Rainer Stiefelhagen, Lingjuan Lyu, Vivek Sharma:
Masked Differential Privacy. CoRR abs/2410.17098 (2024) - [i82]Zhuan Shi, Yifei Song, Xiaoli Tang, Lingjuan Lyu, Boi Faltings:
Copyright-Aware Incentive Scheme for Generative Art Models Using Hierarchical Reinforcement Learning. CoRR abs/2410.20180 (2024) - 2023
- [j28]Hongsheng Hu, Gillian Dobbie, Zoran Salcic, Meng Liu, Jianbing Zhang, Lingjuan Lyu, Xuyun Zhang:
Differentially private locality sensitive hashing based federated recommender system. Concurr. Comput. Pract. Exp. 35(14) (2023) - [j27]Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Niyato, Zengxiang Li, Lingjuan Lyu, Yingbo Liu:
Correction to "Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices". IEEE Internet Things J. 10(1): 973 (2023) - [j26]Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, Fangzhao Wu:
Defending ChatGPT against jailbreak attack via self-reminders. Nat. Mac. Intell. 5(12): 1486-1496 (2023) - [j25]Chen Chen, Jingfeng Zhang, Xilie Xu, Lingjuan Lyu, Chaochao Chen, Tianlei Hu, Gang Chen:
Decision Boundary-Aware Data Augmentation for Adversarial Training. IEEE Trans. Dependable Secur. Comput. 20(3): 1882-1894 (2023) - [j24]Xiaoming Liu, Zhanwei Zhang, Lingjuan Lyu, Zhaohan Zhang, Shuai Xiao, Chao Shen, Philip S. Yu:
Traffic Anomaly Prediction Based on Joint Static-Dynamic Spatio-Temporal Evolutionary Learning. IEEE Trans. Knowl. Data Eng. 35(5): 5356-5370 (2023) - [j23]Si Chen, Yi Zeng, Won Park, Jiachen T. Wang, Xun Chen, Lingjuan Lyu, Zhuoqing Mao, Ruoxi Jia:
Turning a Curse into a Blessing: Enabling In-Distribution-Data-Free Backdoor Removal via Stabilized Model Inversion. Trans. Mach. Learn. Res. 2023 (2023) - [j22]Ziqing Fan, Jiangchao Yao, Ruipeng Zhang, Lingjuan Lyu, Yanfeng Wang, Ya Zhang:
Federated Learning under Partially Disjoint Data via Manifold Reshaping. Trans. Mach. Learn. Res. 2023 (2023) - [j21]Jiahua Dong, Yang Cong, Gan Sun, Lixu Wang, Lingjuan Lyu, Jun Li, Ender Konukoglu:
InOR-Net: Incremental 3-D Object Recognition Network for Point Cloud Representation. IEEE Trans. Neural Networks Learn. Syst. 34(10): 6955-6967 (2023) - [j20]Yu Guo, Ryan Wen Liu, Yuxu Lu, Jiangtian Nie, Lingjuan Lyu, Zehui Xiong, Jiawen Kang, Han Yu, Dusit Niyato:
Haze Visibility Enhancement for Promoting Traffic Situational Awareness in Vision-Enabled Intelligent Transportation. IEEE Trans. Veh. Technol. 72(12): 15421-15435 (2023) - [c74]Xiaofei Sun, Xiaoya Li, Yuxian Meng, Xiang Ao, Lingjuan Lyu, Jiwei Li, Tianwei Zhang:
Defending against Backdoor Attacks in Natural Language Generation. AAAI 2023: 5257-5265 - [c73]Jie Zhang, Bo Li, Chen Chen, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chao Wu:
Delving into the Adversarial Robustness of Federated Learning. AAAI 2023: 11245-11253 - [c72]Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Zhu, Lingjuan Lyu, Binxing Jiao, Tong Xu, Guangzhong Sun, Xing Xie:
Are You Copying My Model? Protecting the Copyright of Large Language Models for EaaS via Backdoor Watermark. ACL (1) 2023: 7653-7668 - [c71]Shuhe Wang, Yuxian Meng, Rongbin Ouyang, Jiwei Li, Tianwei Zhang, Lingjuan Lyu, Guoyin Wang:
GNN-SL: Sequence Labeling Based on Nearest Examples via GNN. ACL (Findings) 2023: 12679-12692 - [c70]Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, Ruoxi Jia:
Narcissus: A Practical Clean-Label Backdoor Attack with Limited Information. CCS 2023: 771-785 - [c69]Tao Bai, Chen Chen, Lingjuan Lyu, Jun Zhao, Bihan Wen:
Towards Adversarially Robust Continual Learning. ICASSP 2023: 1-5 - [c68]Virat Shejwalkar, Lingjuan Lyu, Amir Houmansadr:
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning. ICCV 2023: 4707-4717 - [c67]Jie Zhang, Chen Chen, Weiming Zhuang, Lingjuan Lyu:
TARGET: Federated Class-Continual Learning via Exemplar-Free Distillation. ICCV 2023: 4759-4770 - [c66]Weiming Zhuang, Yonggang Wen, Lingjuan Lyu, Shuai Zhang:
MAS: Towards Resource-Efficient Federated Multiple-Task Learning. ICCV 2023: 23357-23367 - [c65]Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, Michael Spranger:
MECTA: Memory-Economic Continual Test-Time Model Adaptation. ICLR 2023 - [c64]Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti, Michael Spranger:
MocoSFL: enabling cross-client collaborative self-supervised learning. ICLR 2023 - [c63]Chenxi Liu, Lixu Wang, Lingjuan Lyu, Chen Sun, Xiao Wang, Qi Zhu:
Deja Vu: Continual Model Generalization for Unseen Domains. ICLR 2023 - [c62]Yi Zeng, Zhouxing Shi, Ming Jin, Feiyang Kang, Lingjuan Lyu, Cho-Jui Hsieh, Ruoxi Jia:
Towards Robustness Certification Against Universal Perturbations. ICLR 2023 - [c61]Jie Zhang, Chen Chen, Lingjuan Lyu:
IDEAL: Query-Efficient Data-Free Learning from Black-Box Models. ICLR 2023 - [c60]Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu, Da Yan, Dejing Dou, Jun Huan:
Fast Federated Machine Unlearning with Nonlinear Functional Theory. ICML 2023: 4241-4268 - [c59]Junyuan Hong, Yi Zeng, Shuyang Yu, Lingjuan Lyu, Ruoxi Jia, Jiayu Zhou:
Revisiting Data-Free Knowledge Distillation with Poisoned Teachers. ICML 2023: 13199-13212 - [c58]Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, Yu-Gang Jiang:
Reconstructive Neuron Pruning for Backdoor Defense. ICML 2023: 19837-19854 - [c57]Yuchen Liu, Chen Chen, Lingjuan Lyu, Fangzhao Wu, Sai Wu, Gang Chen:
Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting. ICML 2023: 21404-21425 - [c56]Jiaxiang Ren, Yang Zhou, Jiayin Jin, Lingjuan Lyu, Da Yan:
Dimension-independent Certified Neural Network Watermarks via Mollifier Smoothing. ICML 2023: 28976-29008 - [c55]Qucheng Peng, Zhengming Ding, Lingjuan Lyu, Lichao Sun, Chen Chen:
RAIN: RegulArization on Input and Network for Black-Box Domain Adaptation. IJCAI 2023: 4118-4126 - [c54]Tao Qi, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, Xing Xie:
FedSampling: A Better Sampling Strategy for Federated Learning. IJCAI 2023: 4154-4162 - [c53]Fei Zheng, Chaochao Chen, Lingjuan Lyu, Binhui Yao:
Reducing Communication for Split Learning by Randomized Top-k Sparsification. IJCAI 2023: 4665-4673 - [c52]Lingjuan Lyu:
A Pathway Towards Responsible AI Generated Content. IJCAI 2023: 7033-7038 - [c51]Ruixuan Liu, Yang Cao, Yanlin Wang, Lingjuan Lyu, Yun Chen, Hong Chen:
PrivateRec: Differentially Private Model Training and Online Serving for Federated News Recommendation. KDD 2023: 4539-4548 - [c50]Junyuan Hong, Zhuangdi Zhu, Lingjuan Lyu, Yang Zhou, Vishnu Naresh Boddeti, Jiayu Zhou:
International Workshop on Federated Learning for Distributed Data Mining. KDD 2023: 5861-5862 - [c49]Yuyuan Li, Chaochao Chen, Yizhao Zhang, Weiming Liu, Lingjuan Lyu, Xiaolin Zheng, Dan Meng, Jun Wang:
UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition. NeurIPS 2023 - [c48]Xiaoxiao Sun, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li, Liang Zheng:
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? NeurIPS 2023 - [c47]Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, Guodong Long:
Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning. NeurIPS 2023 - [c46]Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, Shiqing Ma:
Where Did I Come From? Origin Attribution of AI-Generated Images. NeurIPS 2023 - [c45]Jiaqi Wang, Xingyi Yang, Suhan Cui, Liwei Che, Lingjuan Lyu, Dongkuan Xu, Fenglong Ma:
Towards Personalized Federated Learning via Heterogeneous Model Reassembly. NeurIPS 2023 - [c44]Yi Zeng, Minzhou Pan, Himanshu Jahagirdar, Ming Jin, Lingjuan Lyu, Ruoxi Jia:
Meta-Sift: How to Sift Out a Clean Subset in the Presence of Data Poisoning? USENIX Security Symposium 2023: 1667-1684 - [c43]Minzhou Pan, Yi Zeng, Lingjuan Lyu, Xue Lin, Ruoxi Jia:
ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning Paradigms. USENIX Security Symposium 2023: 2725-2742 - [c42]Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, Junping Du:
Minimum Topology Attacks for Graph Neural Networks. WWW 2023: 630-640 - [c41]Junlong Chen, Jiangtian Nie, Minrui Xu, Lingjuan Lyu, Zehui Xiong, Jiawen Kang, Yongju Tong, Wenchao Jiang:
Multiple-Agent Deep Reinforcement Learning for Avatar Migration in Vehicular Metaverses. WWW (Companion Volume) 2023: 1258-1265 - [i81]Chenxi Liu, Lixu Wang, Lingjuan Lyu, Chen Sun, Xiao Wang, Qi Zhu:
DEJA VU: Continual Model Generalization For Unseen Domains. CoRR abs/2301.10418 (2023) - [i80]Xiaolong Xu, Lingjuan Lyu, Yihong Dong, Yicheng Lu, Weiqiang Wang, Hong Jin:
SplitGNN: Splitting GNN for Node Classification with Heterogeneous Attention. CoRR abs/2301.12885 (2023) - [i79]Yuchen Liu, Chen Chen, Lingjuan Lyu, Fangzhao Wu, Sai Wu, Gang Chen:
GAIN: Enhancing Byzantine Robustness in Federated Learning with Gradient Decomposition. CoRR abs/2302.06079 (2023) - [i78]Jie Zhang, Bo Li, Chen Chen, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chao Wu:
Delving into the Adversarial Robustness of Federated Learning. CoRR abs/2302.09479 (2023) - [i77]Jiahua Dong, Yang Cong, Gan Sun, Lixu Wang, Lingjuan Lyu, Jun Li, Ender Konukoglu:
InOR-Net: Incremental 3D Object Recognition Network for Point Cloud Representation. CoRR abs/2302.09886 (2023) - [i76]Minzhou Pan, Yi Zeng, Lingjuan Lyu, Xue Lin, Ruoxi Jia:
ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning Paradigms. CoRR abs/2302.11408 (2023) - [i75]Yuyang Deng, Nidham Gazagnadou, Junyuan Hong, Mehrdad Mahdavi, Lingjuan Lyu:
On the Hardness of Robustness Transfer: A Perspective from Rademacher Complexity over Symmetric Difference Hypothesis Space. CoRR abs/2302.12351 (2023) - [i74]Chen Chen, Jie Fu, Lingjuan Lyu:
A Pathway Towards Responsible AI Generated Content. CoRR abs/2303.01325 (2023) - [i73]Xukun Zhou, Jiwei Li, Tianwei Zhang, Lingjuan Lyu, Muqiao Yang, Jun He:
Backdoor Attacks with Input-unique Triggers in NLP. CoRR abs/2303.14325 (2023) - [i72]Tao Bai, Chen Chen, Lingjuan Lyu, Jun Zhao, Bihan Wen:
Towards Adversarially Robust Continual Learning. CoRR abs/2303.17764 (2023) - [i71]Yu Guo, Ryan Wen Liu, Jiangtian Nie, Lingjuan Lyu, Zehui Xiong, Jiawen Kang, Han Yu, Dusit Niyato:
DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for Video-Empowered Intelligent Transportation. CoRR abs/2304.09588 (2023) - [i70]Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Zhu, Lingjuan Lyu, Binxing Jiao, Tong Xu, Guangzhong Sun, Xing Xie:
Are You Copying My Model? Protecting the Copyright of Large Language Models for EaaS via Backdoor Watermark. CoRR abs/2305.10036 (2023) - [i69]Rui Song, Lingjuan Lyu, Wei Jiang, Andreas Festag, Alois C. Knoll:
V2X-Boosted Federated Learning for Cooperative Intelligent Transportation Systems with Contextual Client Selection. CoRR abs/2305.11654 (2023) - [i68]Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, Yu-Gang Jiang:
Reconstructive Neuron Pruning for Backdoor Defense. CoRR abs/2305.14876 (2023) - [i67]Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, Shiqing Ma:
Alteration-free and Model-agnostic Origin Attribution of Generated Images. CoRR abs/2305.18439 (2023) - [i66]Fei Zheng, Chaochao Chen, Lingjuan Lyu, Binhui Yao:
Reducing Communication for Split Learning by Randomized Top-k Sparsification. CoRR abs/2305.18469 (2023) - [i65]Junyuan Hong, Yi Zeng, Shuyang Yu, Lingjuan Lyu, Ruoxi Jia, Jiayu Zhou:
Revisiting Data-Free Knowledge Distillation with Poisoned Teachers. CoRR abs/2306.02368 (2023) - [i64]Weiming Zhuang, Lingjuan Lyu:
Is Normalization Indispensable for Multi-domain Federated Learning? CoRR abs/2306.05879 (2023) - [i63]Xiaofei Sun, Linfeng Dong, Xiaoya Li, Zhen Wan, Shuhe Wang, Tianwei Zhang, Jiwei Li, Fei Cheng, Lingjuan Lyu, Fei Wu, Guoyin Wang:
Pushing the Limits of ChatGPT on NLP Tasks. CoRR abs/2306.09719 (2023) - [i62]Tao Qi, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, Xing Xie:
FedSampling: A Better Sampling Strategy for Federated Learning. CoRR abs/2306.14245 (2023) - [i61]