default search action
Martin Pilát
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c50]Katerina Macková, Martin Pilát:
ProMap: Product Mapping Datasets. ECIR (2) 2024: 159-172 - [c49]Gabriela Kadlecová, Jovita Lukasik, Martin Pilát, Petra Vidnerová, Mahmoud Safari, Roman Neruda, Frank Hutter:
Surprisingly Strong Performance Prediction with Neural Graph Features. ICML 2024 - [i5]Gabriela Kadlecová, Jovita Lukasik, Martin Pilát, Petra Vidnerová, Mahmoud Safari, Roman Neruda, Frank Hutter:
Surprisingly Strong Performance Prediction with Neural Graph Features. CoRR abs/2404.16551 (2024) - 2023
- [i4]Katerina Macková, Martin Pilát:
ProMap: Datasets for Product Mapping in E-commerce. CoRR abs/2309.06882 (2023) - 2022
- [j4]Lukás Chrpa, Martin Pilát, Jakub Gemrot:
Planning and acting in dynamic environments: identifying and avoiding dangerous situations. J. Exp. Theor. Artif. Intell. 34(6): 925-948 (2022) - [c48]Patrik Valkovic, Martin Pilát:
Implementing and evaluating parallel evolutionary algorithms in modern GPU computing libraries. GECCO Companion 2022: 506-509 - [c47]Martin Pilát, Gabriela Suchopárová:
Using graph neural networks as surrogate models in genetic programming. GECCO Companion 2022: 582-585 - 2021
- [c46]Martin Pilát:
Training Electric Vehicle Charging Controllers with Imitation Learning. ICTAI 2021: 674-681 - [c45]Vera Kumová, Martin Pilát:
Beating White-Box Defenses with Black-Box Attacks. IJCNN 2021: 1-8 - [c44]Lukás Chrpa, Martin Pilát, Jakub Med:
On Eventual Applicability of Plans in Dynamic Environments with Cyclic Phenomena. KR 2021: 184-193 - [i3]Martin Pilát:
Training Electric Vehicle Charging Controllers with Imitation Learning. CoRR abs/2107.10111 (2021) - 2020
- [j3]Stepán Balcar, Martin Pilát:
Heterogeneous Island Models and Their Application to Recommender Systems and Electric Vehicle Charging. Int. J. Artif. Intell. Tools 29(03n04): 2060010:1-2060010:20 (2020) - [c43]Lukás Chrpa, Jakub Gemrot, Martin Pilát:
Planning and Acting with Non-Deterministic Events: Navigating between Safe States. AAAI 2020: 9802-9809
2010 – 2019
- 2019
- [c42]Lukás Chrpa, Martin Pilát, Jakub Gemrot:
Compiling Planning Problems with Non-deterministic Events into FOND Planning. RCRA/RiCeRcA@AI*IA 2019 - [c41]Matej Kocián, Martin Pilát:
Using Local Convolutional Units to Defend Against Adversarial Examples. IJCNN 2019: 1-8 - [c40]David Samuel, Martin Pilát:
Composing Multi-Instrumental Music with Recurrent Neural Networks. IJCNN 2019: 1-8 - 2018
- [c39]Martin Pilát:
Evolving Controllers for Electric Vehicle Charging. EvoApplications 2018: 247-255 - [c38]Stepán Balcar, Martin Pilát:
Heterogeneous island model with re-planning of methods. GECCO (Companion) 2018: 245-246 - [c37]Stepán Balcar, Martin Pilát:
Online Parallel Portfolio Selection with Heterogeneous Island Model. ICTAI 2018: 757-764 - [c36]Martin Pilát:
Evolving Ensembles of Traffic Lights Controllers. ICTAI 2018: 958-962 - [c35]Martin Pilát:
Controlling the Charging of Electric Vehicles with Neural Networks. IJCNN 2018: 1-8 - [i2]Martin Pilát:
Controlling the Charging of Electric Vehicles with Neural Networks. CoRR abs/1804.05978 (2018) - [i1]Stepán Balcar, Martin Pilát:
Online Parallel Portfolio Selection with Heterogeneous Island Model. CoRR abs/1806.04528 (2018) - 2017
- [j2]Tomás Kren, Martin Pilát, Roman Neruda:
Automatic Creation of Machine Learning Workflows with Strongly Typed Genetic Programming. Int. J. Artif. Intell. Tools 26(5): 1760020:1-1760020:24 (2017) - [c34]Martin Pilát, Roman Neruda:
Parallel evolutionary algorithm with interleaving generations. GECCO 2017: 865-872 - [c33]Lukás Chrpa, Jakub Gemrot, Martin Pilát:
Towards a Safer Planning and Execution Concept. ICTAI 2017: 972-976 - [c32]Tomás Kren, Martin Pilát, Roman Neruda:
Multi-objective evolution of machine learning workflows. SSCI 2017: 1-8 - [c31]Roman Neruda, Martin Pilát, Josef Moudrík:
Unsupervised and Supervised Activity Analysis of Drone Sensor Data. WEA 2017: 3-11 - 2016
- [c30]Martin Pilát, Roman Neruda:
General tuning of weights in MOEA/D. CEC 2016: 965-972 - [c29]Martin Pilát, Tomás Kren, Roman Neruda:
Asynchronous Evolution of Data Mining Workflow Schemes by Strongly Typed Genetic Programming. ICTAI 2016: 577-584 - [c28]Martin Pilát, Roman Neruda:
Feature Extraction for Surrogate Models in Genetic Programming. PPSN 2016: 335-344 - 2015
- [c27]Jakub Smíd, Martin Pilát, Klára Pesková, Roman Neruda:
Co-evolutionary genetic programming for dataset similarity induction. CEC 2015: 1160-1166 - [c26]Martin Pilát, Roman Neruda:
Incorporating User Preferences in MOEA/D through the Coevolution of Weights. GECCO 2015: 727-734 - [c25]Martin Pilát, Roman Neruda:
Hypervolume-Based Surrogate Model for MO-CMA-ES. ICTAI 2015: 604-611 - [c24]Tomás Kren, Martin Pilát, Klára Pesková, Roman Neruda:
Generating Workflow Graphs Using Typed Genetic Programming. MetaSel@PKDD/ECML 2015: 108-109 - [c23]Toma Ken, Martin Pilát, Roman Neruda:
Evolving Workflow Graphs Using Typed Genetic Programming. SSCI 2015: 1407-1414 - [c22]Jakub Smíd, Martin Pilát, Klára Pesková, Roman Neruda:
Multi-Objective Genetic Programming for Dataset Similarity Induction. SSCI 2015: 1576-1582 - 2014
- [c21]Martin Pilát, Roman Neruda:
The effect of different local search algorithms on the performance of multi-objective optimizers. IEEE Congress on Evolutionary Computation 2014: 2172-2179 - [c20]Klára Pesková, Jakub Smíd, Martin Pilát, Ondrej Kazík, Roman Neruda:
Hybrid Multi-Agent System for Metalearning in Data Mining. MetaSel@ECAI 2014: 53-54 - [c19]Martin Pilát, Roman Neruda:
Hypervolume-based local search in multi-objective evolutionary optimization. GECCO 2014: 637-644 - 2013
- [j1]Martin Pilát, Roman Neruda:
Aggregate meta-models for evolutionary multiobjective and many-objective optimization. Neurocomputing 116: 392-402 (2013) - [c18]Martin Pilát, Roman Neruda:
Surrogate model selection for evolutionary multiobjective optimization. IEEE Congress on Evolutionary Computation 2013: 1860-1867 - [c17]Martin Pilát, Roman Neruda:
Multiobjectivization for classifier parameter tuning. GECCO (Companion) 2013: 97-98 - [c16]Martin Pilát, Roman Neruda:
Multi-objectivization and Surrogate Modelling for Neural Network Hyper-parameters Tuning. ICIC (3) 2013: 61-66 - 2012
- [c15]Stepán Balcar, Martin Pilát, Roman Neruda:
An evolutionary algorithm for 2D semi-guillotinable circular saw cutting. IEEE Congress on Evolutionary Computation 2012: 1-5 - [c14]Martin Pilát, Roman Neruda:
An Evolutionary Strategy for Surrogate-Based Multiobjective Optimization. IEEE Congress on Evolutionary Computation 2012: 1-7 - [c13]Martin Pilát, Roman Neruda:
A surrogate multiobjective evolutionary strategy with local search and pre-selection. GECCO (Companion) 2012: 633-634 - [c12]Ondrej Kazík, Klára Pesková, Martin Pilát, Roman Neruda:
A Novel Meta Learning System and Its Application to Optimization of Computing Agents' Results. IAT 2012: 170-174 - [c11]Ondrej Kazík, Klára Pesková, Martin Pilát, Roman Neruda:
Combining Parameter Space Search and Meta-learning for Data-Dependent Computational Agent Recommendation. ICMLA (2) 2012: 36-41 - [c10]Martin Pilát, Roman Neruda:
Meta-learning and Model Selection in Multi-objective Evolutionary Algorithms. ICMLA (1) 2012: 433-438 - [c9]Martin Pilát, Roman Neruda:
A Surrogate Based Multiobjective Evolution Strategy with Different Models for Local Search and Pre-selection. ICTAI 2012: 215-222 - 2011
- [c8]Martin Pilát, Roman Neruda:
ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model. IEEE Congress on Evolutionary Computation 2011: 1202-1208 - [c7]Martin Pilát, Roman Neruda:
LAMM-MMA: multiobjective memetic algorithm with local aggregate meta-model. GECCO (Companion) 2011: 79-80 - [c6]Martin Pilát, Roman Neruda:
Improving many-objective optimizers with aggregate meta-models. HIS 2011: 555-560 - [c5]Ondrej Kazík, Klára Pesková, Martin Pilát, Roman Neruda:
Meta Learning in Multi-agent Systems for Data Mining. IAT 2011: 433-434 - [c4]Martin Pilát, Roman Neruda:
Local Meta-models for ASM-MOMA. ICIC (3) 2011: 79-84 - [c3]Martin Pilát, Roman Neruda:
Local Meta-models for ASM-MOMA. ICIC (1) 2011: 147-152 - [c2]Ondrej Kazík, Klára Pesková, Martin Pilát, Roman Neruda:
Implementation of Parameter Space Search for Meta Learning in a Data-Mining Multi-agent System. ICMLA (2) 2011: 366-369 - 2010
- [c1]Martin Pilát, Roman Neruda:
Combining multiobjective and single-objective genetic algorithms in heterogeneous island model. IEEE Congress on Evolutionary Computation 2010: 1-8
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-04 00:30 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint