default search action
Debarghya Ghoshdastidar
Person information
- affiliation: Technical University of Munich, Germany
- affiliation: Eberhard Karls Universität of Tübingen, Germany
- affiliation: Indian Institute of Science, Bangalore, India
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j7]Pascal Mattia Esser, Satyaki Mukherjee, Debarghya Ghoshdastidar:
Representation Learning Dynamics of Self-Supervised Models. Trans. Mach. Learn. Res. 2024 (2024) - [c23]Pascal Mattia Esser, Maximilian Fleissner, Debarghya Ghoshdastidar:
Non-parametric Representation Learning with Kernels. AAAI 2024: 11910-11918 - [c22]Maximilian Fleissner, Leena Chennuru Vankadara, Debarghya Ghoshdastidar:
Explaining Kernel Clustering via Decision Trees. ICLR 2024 - [i30]Maximilian Fleissner, Leena Chennuru Vankadara, Debarghya Ghoshdastidar:
Explaining Kernel Clustering via Decision Trees. CoRR abs/2402.09881 (2024) - [i29]Alexandru Craciun, Debarghya Ghoshdastidar:
On the Stability of Gradient Descent for Large Learning Rate. CoRR abs/2402.13108 (2024) - [i28]Gautham Govind Anil, Pascal Mattia Esser, Debarghya Ghoshdastidar:
When can we Approximate Wide Contrastive Models with Neural Tangent Kernels and Principal Component Analysis? CoRR abs/2403.08673 (2024) - [i27]Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, Stephan Günnemann:
Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks. CoRR abs/2407.10867 (2024) - 2023
- [j6]Aishik Mandal, Michaël Perrot, Debarghya Ghoshdastidar:
A Revenue Function for Comparison-Based Hierarchical Clustering. Trans. Mach. Learn. Res. 2023 (2023) - [j5]Mahalakshmi Sabanayagam, Pascal Mattia Esser, Debarghya Ghoshdastidar:
Analysis of Convolutions, Non-linearity and Depth in Graph Neural Networks using Neural Tangent Kernel. Trans. Mach. Learn. Res. 2023 (2023) - [c21]Pascal Mattia Esser, Satyaki Mukherjee, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar:
Improved Representation Learning Through Tensorized Autoencoders. AISTATS 2023: 8294-8307 - [i26]Satyaki Mukherjee, Soumendu Sundar Mukherjee, Debarghya Ghoshdastidar:
Wasserstein Projection Pursuit of Non-Gaussian Signals. CoRR abs/2302.12693 (2023) - [i25]Anurag Singh, Mahalakshmi Sabanayagam, Krikamol Muandet, Debarghya Ghoshdastidar:
Fast Adaptive Test-Time Defense with Robust Features. CoRR abs/2307.11672 (2023) - [i24]Pascal Mattia Esser, Satyaki Mukherjee, Debarghya Ghoshdastidar:
Representation Learning Dynamics of Self-Supervised Models. CoRR abs/2309.02011 (2023) - [i23]Pascal Mattia Esser, Maximilian Fleissner, Debarghya Ghoshdastidar:
Non-Parametric Representation Learning with Kernels. CoRR abs/2309.02028 (2023) - 2022
- [c20]Mahalakshmi Sabanayagam, Leena Chennuru Vankadara, Debarghya Ghoshdastidar:
Graphon based Clustering and Testing of Networks: Algorithms and Theory. ICLR 2022 - [c19]Leena Chennuru Vankadara, Luca Rendsburg, Ulrike von Luxburg, Debarghya Ghoshdastidar:
Interpolation and Regularization for Causal Learning. NeurIPS 2022 - [c18]Leena Chennuru Vankadara, Philipp Michael Faller, Michaela Hardt, Lenon Minorics, Debarghya Ghoshdastidar, Dominik Janzing:
Causal forecasting: generalization bounds for autoregressive models. UAI 2022: 2002-2012 - [i22]Leena Chennuru Vankadara, Luca Rendsburg, Ulrike von Luxburg, Debarghya Ghoshdastidar:
Interpolation and Regularization for Causal Learning. CoRR abs/2202.09054 (2022) - [i21]Mahalakshmi Sabanayagam, Pascal Mattia Esser, Debarghya Ghoshdastidar:
Representation Power of Graph Convolutions : Neural Tangent Kernel Analysis. CoRR abs/2210.09809 (2022) - [i20]Luca Rendsburg, Leena Chennuru Vankadara, Debarghya Ghoshdastidar, Ulrike von Luxburg:
A Consistent Estimator for Confounding Strength. CoRR abs/2211.01903 (2022) - [i19]Aishik Mandal, Michaël Perrot, Debarghya Ghoshdastidar:
A Revenue Function for Comparison-Based Hierarchical Clustering. CoRR abs/2211.16459 (2022) - [i18]Pascal Mattia Esser, Satyaki Mukherjee, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar:
Improved Representation Learning Through Tensorized Autoencoders. CoRR abs/2212.01046 (2022) - 2021
- [c17]Leena C. Vankadara, Sebastian Bordt, Ulrike von Luxburg, Debarghya Ghoshdastidar:
Recovery Guarantees for Kernel-based Clustering under Non-parametric Mixture Models. AISTATS 2021: 3817-3825 - [c16]Nil Ayday, Debarghya Ghoshdastidar:
Improvement on Incremental Spectral Clustering. LWDA 2021: 78-85 - [c15]Pascal Mattia Esser, Leena C. Vankadara, Debarghya Ghoshdastidar:
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks. NeurIPS 2021: 27043-27056 - [i17]Mahalakshmi Sabanayagam, Leena Chennuru Vankadara, Debarghya Ghoshdastidar:
Graphon based Clustering and Testing of Networks: Algorithms and Theory. CoRR abs/2110.02722 (2021) - [i16]Mahalakshmi Sabanayagam, Pascal Mattia Esser, Debarghya Ghoshdastidar:
New Insights into Graph Convolutional Networks using Neural Tangent Kernels. CoRR abs/2110.04060 (2021) - [i15]Leena C. Vankadara, Sebastian Bordt, Ulrike von Luxburg, Debarghya Ghoshdastidar:
Recovery Guarantees for Kernel-based Clustering under Non-parametric Mixture Models. CoRR abs/2110.09476 (2021) - [i14]Leena C. Vankadara, Philipp Michael Faller, Lenon Minorics, Debarghya Ghoshdastidar, Dominik Janzing:
Causal Forecasting: Generalization Bounds for Autoregressive Models. CoRR abs/2111.09831 (2021) - [i13]Pascal Mattia Esser, Leena C. Vankadara, Debarghya Ghoshdastidar:
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks. CoRR abs/2112.03968 (2021) - 2020
- [c14]Leena Chennuru Vankadara, Debarghya Ghoshdastidar:
On the optimality of kernels for high-dimensional clustering. AISTATS 2020: 2185-2195 - [c13]Michaël Perrot, Pascal Mattia Esser, Debarghya Ghoshdastidar:
Near-Optimal Comparison Based Clustering. NeurIPS 2020 - [i12]Michaël Perrot, Pascal Mattia Esser, Debarghya Ghoshdastidar:
Near-Optimal Comparison Based Clustering. CoRR abs/2010.03918 (2020)
2010 – 2019
- 2019
- [c12]Debarghya Ghoshdastidar, Michaël Perrot, Ulrike von Luxburg:
Foundations of Comparison-Based Hierarchical Clustering. NeurIPS 2019: 7454-7464 - [i11]Leena Chennuru Vankadara, Debarghya Ghoshdastidar:
On the optimality of kernels for high-dimensional clustering. CoRR abs/1912.00458 (2019) - 2018
- [c11]Debarghya Ghoshdastidar, Ulrike von Luxburg:
Practical Methods for Graph Two-Sample Testing. NeurIPS 2018: 3019-3028 - [i10]Debarghya Ghoshdastidar, Michaël Perrot, Ulrike von Luxburg:
Foundations of Comparison-Based Hierarchical Clustering. CoRR abs/1811.00928 (2018) - [i9]Debarghya Ghoshdastidar, Ulrike von Luxburg:
Practical methods for graph two-sample testing. CoRR abs/1811.12752 (2018) - 2017
- [j4]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques. J. Mach. Learn. Res. 18: 50:1-50:41 (2017) - [c10]Siavash Haghiri, Debarghya Ghoshdastidar, Ulrike von Luxburg:
Comparison-Based Nearest Neighbor Search. AISTATS 2017: 851-859 - [c9]Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, Ulrike von Luxburg:
Two-Sample Tests for Large Random Graphs Using Network Statistics. COLT 2017: 954-977 - [i8]Siavash Haghiri, Debarghya Ghoshdastidar, Ulrike von Luxburg:
Comparison Based Nearest Neighbor Search. CoRR abs/1704.01460 (2017) - 2016
- [j3]Debarghya Ghoshdastidar, Ajay P. Adsul, Ambedkar Dukkipati:
Learning With Jensen-Tsallis Kernels. IEEE Trans. Neural Networks Learn. Syst. 27(10): 2108-2119 (2016) - [c8]Ambedkar Dukkipati, Debarghya Ghoshdastidar, Jinu Krishnan:
Mixture modeling with compact support distributions for unsupervised learning. IJCNN 2016: 2706-2713 - [i7]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques. CoRR abs/1602.06516 (2016) - 2015
- [c7]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
Spectral Clustering Using Multilinear SVD: Analysis, Approximations and Applications. AAAI 2015: 2610-2616 - [c6]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning. ICML 2015: 400-409 - 2014
- [j2]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar:
Newton-based stochastic optimization using q-Gaussian smoothed functional algorithms. Autom. 50(10): 2606-2614 (2014) - [j1]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar:
Smoothed Functional Algorithms for Stochastic Optimization Using q-Gaussian Distributions. ACM Trans. Model. Comput. Simul. 24(3): 17:1-17:26 (2014) - [c5]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Ajay P. Adsul, Aparna S. Vijayan:
Spectral Clustering with Jensen-Type Kernels and Their Multi-point Extensions. CVPR 2014: 1472-1477 - [c4]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition Model. NIPS 2014: 397-405 - [i6]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Ajay P. Adsul, Aparna S. Vijayan:
Spectral Clustering with Jensen-type kernels and their multi-point extensions. CoRR abs/1403.4378 (2014) - 2013
- [c3]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
On Power-Law Kernels, Corresponding Reproducing Kernel Hilbert Space and Applications. AAAI 2013: 365-371 - [c2]Ambedkar Dukkipati, Gaurav Pandey, Debarghya Ghoshdastidar, Paramita Koley, D. M. V. Satya Sriram:
Generative Maximum Entropy Learning for Multiclass Classification. ICDM 2013: 141-150 - [i5]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar:
Newton based Stochastic Optimization using q-Gaussian Smoothed Functional Algorithms. CoRR abs/1311.2296 (2013) - 2012
- [c1]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar:
q-Gaussian based Smoothed Functional algorithms for stochastic optimization. ISIT 2012: 1059-1063 - [i4]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar:
q-Gaussian based Smoothed Functional Algorithm for Stochastic Optimization. CoRR abs/1202.5665 (2012) - [i3]Debarghya Ghoshdastidar, Ambedkar Dukkipati:
On q-Gaussian kernel and its Reproducing Kernel Hilbert Space. CoRR abs/1204.1800 (2012) - [i2]D. M. V. Satya Sriram, Gaurav Pandey, Debarghya Ghoshdastidar, Ambedkar Dukkipati, M. Narasimha Murty:
Maximum Entropy with Maximum J-Divergence Discrimination for Text Classification. CoRR abs/1205.0651 (2012) - [i1]Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar:
Smoothed Functional Algorithms for Stochastic Optimization using q-Gaussian Distributions. CoRR abs/1206.4832 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint