


default search action
Paolo Papotti
Person information
- affiliation: EURECOM, Campus SophiaTech, France
- affiliation (former): Arizona State University, USA
- affiliation (former): Roma Tre University, Rome, Italy
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [c101]Alessandra Flaccavento, Youri Peskine, Paolo Papotti, Riccardo Torlone, Raphaël Troncy:
Automated Detection of Tropes In Short Texts. COLING 2025: 5936-5951 - 2024
- [j44]Giansalvatore Mecca
, Paolo Papotti
, Donatello Santoro
, Enzo Veltri
:
BUNNI: Learning Repair Actions in Rule-driven Data Cleaning. ACM J. Data Inf. Qual. 16(2): 12:1-12:31 (2024) - [c100]Giulia Bonino, Gabriele Sanmartino, Giovanni Gatti Pinheiro, Paolo Papotti, Raphaël Troncy, Pietro Michiardi:
EULER: Fine-Tuning a Large Language Model for Socratic Interactions. AIxEDU@AI*IA 2024 - [c99]Miro Mannino
, Junior Garcia
, Reem Hazim
, Azza Abouzied
, Paolo Papotti
:
Data Void Exploits: Tracking & Mitigation Strategies. CIKM 2024: 1627-1637 - [c98]Riccardo Cappuzzo, Saravanan Thirumuruganathan, Paolo Papotti:
Relational Data Imputation with Graph Neural Networks. EDBT 2024: 221-233 - [c97]Mohammed Saeed, Nicola De Cao, Paolo Papotti:
Querying Large Language Models with SQL. EDBT 2024: 365-372 - [c96]Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti, Donatello Santoro, Enzo Veltri:
Similarity Measures For Incomplete Database Instances. EDBT 2024: 461-473 - [c95]Jean-Flavien Bussotti, Luca Ragazzi, Giacomo Frisoni, Gianluca Moro, Paolo Papotti:
Unknown Claims: Generation of Fact-Checking Training Examples from Unstructured and Structured Data. EMNLP 2024: 12105-12122 - [c94]Simone Papicchio
, Paolo Papotti, Luca Cagliero
:
Evaluating Ambiguous Questions in Semantic Parsing. ICDEW 2024: 338-342 - [c93]Paolo Papotti:
Large Language Models as Storage for SQL Querying. ICDE 2024: 5657-5658 - [c92]Jean-Flavien Bussotti, Paolo Papotti, Donatello Santoro, Enzo Veltri:
A Framework for the Generation of Training Examples from Tabular Data. SEBD 2024: 302-311 - [c91]Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti, Donatello Santoro, Enzo Veltri:
Comparing Incomplete Database Instances. SEBD 2024: 489-507 - [c90]Youri Peskine, Raphaël Troncy, Paolo Papotti:
EURECOM at SemEval-2024 Task 4: Hierarchical Loss and Model Ensembling in Detecting Persuasion Techniques. SemEval@NAACL 2024: 1177-1182 - [c89]Grégoire Burel
, Martino Mensio
, Youri Peskine
, Raphaël Troncy
, Paolo Papotti
, Harith Alani
:
CimpleKG: A Continuously Updated Knowledge Graph on Misinformation, Factors and Fact-Checks. ISWC (3) 2024: 97-114 - [i16]Riccardo Cappuzzo, Gaël Varoquaux, Aimee Coelho, Paolo Papotti:
Retrieve, Merge, Predict: Augmenting Tables with Data Lakes. CoRR abs/2402.06282 (2024) - [i15]Giulio Corallo, Paolo Papotti:
Finch: Prompt-guided Key-Value Cache Compression. CoRR abs/2408.00167 (2024) - [i14]Giulio Franzese, Mattia Martini, Giulio Corallo, Paolo Papotti, Pietro Michiardi:
Latent Abstractions in Generative Diffusion Models. CoRR abs/2410.03368 (2024) - 2023
- [j43]Dustin Wright, Paolo Papotti, Isabelle Augenstein
:
Introduction to the Special Issue on Truth and Trust Online. ACM J. Data Inf. Qual. 15(1): 1:1-1:3 (2023) - [j42]Rajesh Shrestha
, Omeed Habibelahian
, Arash Termehchy
, Paolo Papotti
:
Exploratory Training: When Annotators Learn About Data. Proc. ACM Manag. Data 1(2): 135:1-135:25 (2023) - [j41]Jean-Flavien Bussotti
, Enzo Veltri
, Donatello Santoro
, Paolo Papotti
:
Generation of Training Examples for Tabular Natural Language Inference. Proc. ACM Manag. Data 1(4): 243:1-243:27 (2023) - [j40]Gilbert Badaro, Mohammed Saeed, Paolo Papotti:
Transformers for Tabular Data Representation: A Survey of Models and Applications. Trans. Assoc. Comput. Linguistics 11: 227-249 (2023) - [c88]Paolo Papotti:
Computational Methods to Counter Online Misinformation. ACM Europe Summer School 2023: 2023:1 - [c87]Youri Peskine, Damir Korencic, Ivan Grubisic, Paolo Papotti, Raphaël Troncy, Paolo Rosso:
Definitions Matter: Guiding GPT for Multi-label Classification. EMNLP (Findings) 2023: 4054-4063 - [c86]Enzo Veltri
, Gilbert Badaro, Mohammed Saeed, Paolo Papotti:
Data Ambiguity Profiling for the Generation of Training Examples. ICDE 2023: 450-463 - [c85]Rishi Advani
, Paolo Papotti
, Abolfazl Asudeh
:
Maximizing Neutrality in News Ordering. KDD 2023: 11-24 - [c84]Muhammad Shujaat Mirza, Labeeba Begum, Liang Niu, Sarah Pardo, Azza Abouzied, Paolo Papotti, Christina Pöpper:
Tactics, Threats & Targets: Modeling Disinformation and its Mitigation. NDSS 2023 - [c83]Simone Papicchio, Paolo Papotti, Luca Cagliero:
QATCH: Benchmarking SQL-centric tasks with Table Representation Learning Models on Your Data. NeurIPS 2023 - [c82]Enzo Veltri, Gilbert Badaro, Mohammed Saeed, Paolo Papotti:
Attribute Ambiguity Discovery: A Deep Learning Approach via Unsupervised Learning. SEBD 2023: 479-487 - [c81]Madelon Hulsebos
, Xiang Deng
, Huan Sun
, Paolo Papotti
:
Models and Practice of Neural Table Representations. SIGMOD Conference Companion 2023: 83-89 - [c80]Lluís Garcia Pueyo
, Panayiotis Tsaparas
, Prathyusha Senthil Kumar
, Timos Sellis
, Paolo Papotti
, Sibel Adali
, Giuseppe Manco
, Tudor Trufinescu
, Gireeja Ranade
, James R. Verbus
, Mehmet N. Tek
, Anthony McCosker
:
Integrity 2023: Integrity in Social Networks and Media. WSDM 2023: 1269-1270 - [c79]Luca Righes
, Mohammed Saeed
, Gianluca Demartini
, Paolo Papotti
:
The Community Notes Observatory: Can Crowdsourced Fact-Checking be Trusted in Practice? WWW (Companion Volume) 2023: 172-175 - [c78]Youri Peskine
, Raphaël Troncy
, Paolo Papotti
:
Analyzing COVID-Related Social Discourse on Twitter using Emotion, Sentiment, Political Bias, Stance, Veracity and Conspiracy Theories. WWW (Companion Volume) 2023: 688-693 - [i13]Mohammed Saeed, Nicola De Cao, Paolo Papotti:
Querying Large Language Models with SQL. CoRR abs/2304.00472 (2023) - [i12]Rishi Advani, Paolo Papotti, Abolfazl Asudeh:
Maximizing Neutrality in News Ordering. CoRR abs/2305.15790 (2023) - [i11]Kensuke Mitsuzawa, Motonobu Kanagawa, Stefano Bortoli, Margherita Grossi, Paolo Papotti:
Variable Selection in Maximum Mean Discrepancy for Interpretable Distribution Comparison. CoRR abs/2311.01537 (2023) - 2022
- [j39]Donatello Santoro
, Saravanan Thirumuruganathan
, Paolo Papotti
:
Editorial: Special Issue on Deep Learning for Data Quality. ACM J. Data Inf. Qual. 14(3): 14:1-14:3 (2022) - [j38]Gilbert Badaro, Paolo Papotti:
Transformers for Tabular Data Representation: A Tutorial on Models and Applications. Proc. VLDB Endow. 15(12): 3746-3749 (2022) - [j37]Paolo Papotti:
Technical Perspective of TURL: Table Understanding through Representation Learning. SIGMOD Rec. 51(1): 32 (2022) - [c77]Mohammed Saeed, Nicolas Traub, Maelle Nicolas, Gianluca Demartini
, Paolo Papotti:
Crowdsourced Fact-Checking at Twitter: How Does the Crowd Compare With Experts? CIKM 2022: 1736-1746 - [c76]Naser Ahmadi, Hansjorg Sand, Paolo Papotti:
Building A Knowledge Graph for Audit Information. EDBT/ICDT Workshops 2022 - [c75]Mohammed Saeed, Paolo Papotti:
You Are My Type! Type Embeddings for Pre-trained Language Models. EMNLP (Findings) 2022: 4583-4598 - [c74]Naser Ahmadi, Hansjorg Sand, Paolo Papotti:
Unsupervised Matching of Data and Text. ICDE 2022: 1058-1070 - [c73]Youri Peskine, Paolo Papotti, Raphaël Troncy:
Detection of COVID-19-Related Conspiracy Theories in Tweets using Transformer-Based Models and Node Embedding Techniques. MediaEval 2022 - [c72]Enzo Veltri, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, Paolo Papotti:
Ambiguity Detection and Textual Claims Generation from Relational Data. SEBD 2022: 333-340 - [c71]Omeed Habibelahian, Rajesh Shrestha, Arash Termehchy, Paolo Papotti:
Exploratory training: when trainers learn. HILDA@SIGMOD 2022: 3:1-3:5 - [c70]Enzo Veltri
, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, Paolo Papotti:
Pythia: Unsupervised Generation of Ambiguous Textual Claims from Relational Data. SIGMOD Conference 2022: 2409-2412 - [i10]Mohammed Saeed, Nicolas Traub, Maelle Nicolas, Gianluca Demartini, Paolo Papotti:
Crowdsourced Fact-Checking at Twitter: How Does the Crowd Compare With Experts? CoRR abs/2208.09214 (2022) - [i9]Lluís Garcia Pueyo, Panayiotis Tsaparas, Anand Bhaskar, Prathyusha Senthil Kumar, Roelof van Zwol, Timos Sellis, Anthony McCosker, Paolo Papotti:
Integrity 2022: Integrity in Social Networks and Media. CoRR abs/2209.11867 (2022) - 2021
- [j36]Mohammed Saeed, Paolo Papotti:
Fact-Checking Statistical Claims with Tables. IEEE Data Eng. Bull. 44(3): 27-38 (2021) - [c69]Paolo Papotti:
Data Challenges in Disinformation Diffusion Analysis. EDBT/ICDT Workshops 2021 - [c68]Mohammed Saeed, Naser Ahmadi, Preslav Nakov, Paolo Papotti:
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models. EMNLP (1) 2021: 1460-1476 - [c67]Preslav Nakov, David P. A. Corney, Maram Hasanain, Firoj Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo Papotti, Shaden Shaar, Giovanni Da San Martino:
Automated Fact-Checking for Assisting Human Fact-Checkers. IJCAI 2021: 4551-4558 - [c66]Rayhane Rezgui, Mohammed Saeed, Paolo Papotti:
Automatic Verification of Data Summaries. INLG 2021: 271-275 - [c65]Youri Peskine, Giulio Alfarano, Ismail Harrando, Paolo Papotti, Raphaël Troncy:
Detecting COVID-19-Related Conspiracy Theories in Tweets. MediaEval 2021 - [c64]Riccardo Cappuzzo, Paolo Papotti, Saravanan Thirumuruganathan:
EmbDI: Generating Embeddings for Relational Data Integration (Discussion Paper). SEBD 2021: 331-338 - [c63]Naser Ahmadi, Paolo Papotti
:
Wikidata Logical Rules and Where to Find Them. WWW (Companion Volume) 2021: 580-581 - [c62]Michael Loster, Davide Mottin, Paolo Papotti
, Jan Ehmüller, Benjamin Feldmann, Felix Naumann:
Few-Shot Knowledge Validation using Rules. WWW 2021: 3314-3324 - [c61]Paolo Papotti:
Computational Fact Checking is Real, but will it Stop Misinformation? (Extended Abstract). MISINFO@WWW 2021 - [e2]Isabelle Augenstein, Paolo Papotti, Dustin Wright:
Proceedings of the 2021 Truth and Trust Online Conference (TTO 2021), Virtual, October 7-8, 2021. Hacks Hackers 2021 [contents] - [i8]Preslav Nakov, David P. A. Corney, Maram Hasanain, Firoj Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo Papotti, Shaden Shaar, Giovanni Da San Martino:
Automated Fact-Checking for Assisting Human Fact-Checkers. CoRR abs/2103.07769 (2021) - [i7]Mohammed Saeed, Naser Ahmadi, Preslav Nakov, Paolo Papotti:
RuleBert: Teaching Soft Rules to Pre-trained Language Models. CoRR abs/2109.13006 (2021) - [i6]Naser Ahmadi, Hansjorg Sand, Paolo Papotti:
Unsupervised Matching of Data and Text. CoRR abs/2112.08776 (2021) - 2020
- [j35]Naser Ahmadi, Viet-Phi Huynh, Venkata Vamsikrishna Meduri, Stefano Ortona, Paolo Papotti
:
Mining Expressive Rules in Knowledge Graphs. ACM J. Data Inf. Qual. 12(2): 8:1-8:27 (2020) - [j34]Naser Ahmadi, Thi-Thuy-Duyen Truong, Le-Hong-Mai Dao, Stefano Ortona, Paolo Papotti
:
RuleHub: A Public Corpus of Rules for Knowledge Graphs. ACM J. Data Inf. Qual. 12(4): 21:1-21:22 (2020) - [j33]Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, Immanuel Trummer:
Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-Driven Claim Verification. Proc. VLDB Endow. 13(11): 2508-2521 (2020) - [j32]Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, Immanuel Trummer:
Scrutinizer: Fact Checking Statistical Claims. Proc. VLDB Endow. 13(12): 2965-2968 (2020) - [j31]Sihem Amer-Yahia, Senjuti Basu Roy, Lei Chen, Atsuyuki Morishima, James Abello Monedero, Pierre Bourhis, François Charoy, Marina Danilevsky, Gautam Das
, Gianluca Demartini
, Shady Elbassuoni, David Gross-Amblard, Emilie Hoareau, Munenari Inoguchi, Jared B. Kenworthy, Itaru Kitahara, Dongwon Lee, Yunyao Li, Ria Mae Borromeo, Paolo Papotti
, H. Raghav Rao, Sudeepa Roy, Pierre Senellart, Keishi Tajima, Saravanan Thirumuruganathan, Marion Tommasi, Kazutoshi Umemoto, Andrea Wiggins
, Koichiro Yoshida:
Making AI Machines Work for Humans in FoW. SIGMOD Rec. 49(2): 30-35 (2020) - [j30]Floris Geerts
, Giansalvatore Mecca, Paolo Papotti
, Donatello Santoro:
Cleaning data with Llunatic. VLDB J. 29(4): 867-892 (2020) - [c60]Graziano Mita, Paolo Papotti, Maurizio Filippone, Pietro Michiardi:
LIBRE: Learning Interpretable Boolean Rule Ensembles. AISTATS 2020: 245-255 - [c59]Kim-Hung Le
, Paolo Papotti
:
User-driven Error Detection for Time Series with Events. ICDE 2020: 745-757 - [c58]Riccardo Cappuzzo
, Paolo Papotti
, Saravanan Thirumuruganathan:
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration Tasks. SIGMOD Conference 2020: 1335-1349 - [i5]Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, Immanuel Trummer:
Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-Driven Claim Verification. CoRR abs/2003.06708 (2020)
2010 – 2019
- 2019
- [j29]Paolo Atzeni, Luigi Bellomarini, Paolo Papotti
, Riccardo Torlone
:
Meta-Mappings for Schema Mapping Reuse. Proc. VLDB Endow. 12(5): 557-569 (2019) - [j28]Viet-Phi Huynh, Paolo Papotti
:
Buckle: Evaluating Fact Checking Algorithms Built on Knowledge Bases. Proc. VLDB Endow. 12(12): 1798-1801 (2019) - [c57]Viet-Phi Huynh, Paolo Papotti
:
A Benchmark for Fact Checking Algorithms Built on Knowledge Bases. CIKM 2019: 689-698 - [c56]Paolo Atzeni, Luigi Bellomarini, Paolo Papotti, Riccardo Torlone:
GAIA: A Framework for Schema Mapping Reuse (extended abstract). SEBD 2019 - [c55]Naser Ahmadi, Joohyung Lee, Paolo Papotti, Mohammed Saeed:
Explainable Fact Checking with Probabilistic Answer Set Programming. TTO 2019 - [e1]Paolo Papotti:
Proceedings of the Workshops of the EDBT/ICDT 2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019. CEUR Workshop Proceedings 2322, CEUR-WS.org 2019 [contents] - [r2]Paolo Papotti:
Schema Mapping. Encyclopedia of Big Data Technologies 2019 - [r1]Paolo Papotti, Donatello Santoro:
Data Integration. Encyclopedia of Big Data Technologies 2019 - [i4]Naser Ahmadi, Joohyung Lee, Paolo Papotti, Mohammed Saeed:
Explainable Fact Checking with Probabilistic Answer Set Programming. CoRR abs/1906.09198 (2019) - [i3]Riccardo Cappuzzo
, Paolo Papotti, Saravanan Thirumuruganathan:
Local Embeddings for Relational Data Integration. CoRR abs/1909.01120 (2019) - [i2]Graziano Mita, Paolo Papotti, Maurizio Filippone, Pietro Michiardi:
LIBRE: Learning Interpretable Boolean Rule Ensembles. CoRR abs/1911.06537 (2019) - 2018
- [j27]Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas
, Ahmed K. Elmagarmid, Yasser Idris, Zoi Kaoudi
, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad Ouzzani, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Nan Tang, Saravanan Thirumuruganathan, Anis Troudi:
RHEEM: Enabling Cross-Platform Data Processing - May The Big Data Be With You! -. Proc. VLDB Endow. 11(11): 1414-1427 (2018) - [j26]Stefano Ortona, Venkata Vamsikrishna Meduri, Paolo Papotti
:
RuDiK: Rule Discovery in Knowledge Bases. Proc. VLDB Endow. 11(12): 1946-1949 (2018) - [c54]Stefano Ortona, Venkata Vamsikrishna Meduri, Paolo Papotti
:
Robust Discovery of Positive and Negative Rules in Knowledge Bases. ICDE 2018: 1168-1179 - [c53]Donatello Santoro, Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti:
Let's Make It Dirty with BART! SEBD 2018 - [c52]Viet-Phi Huynh, Paolo Papotti
:
Towards a Benchmark for Fact Checking with Knowledge Bases. WWW (Companion Volume) 2018: 1595-1598 - [p4]Giansalvatore Mecca, Paolo Papotti, Donatello Santoro:
Schema Mappings: From Data Translation to Data Cleaning. A Comprehensive Guide Through the Italian Database Research 2018: 203-217 - 2017
- [j25]Zuhair Khayyat
, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Nan Tang, Panos Kalnis
:
Errata for "Lightning Fast and Space Efficient Inequality Joins" (PVLDB 8(13): 2074-2085). Proc. VLDB Endow. 10(9): 985 (2017) - [j24]Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Armando Solar-Lezama
, Nan Tang:
Synthesizing Entity Matching Rules by Examples. Proc. VLDB Endow. 11(2): 189-202 (2017) - [j23]Zuhair Khayyat
, William Lucia, Meghna Singh
, Mourad Ouzzani, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Nan Tang, Panos Kalnis
:
Fast and scalable inequality joins. VLDB J. 26(1): 125-150 (2017) - [c51]Nikhil Vementala, Paolo Papotti
, Mohamed Sarwat:
A Framework for Interactive Geospatial Map Cleaning using GPS Trajectories. IWCTS@SIGSPATIAL 2017: 19-23 - [c50]Michael Benedikt, George Konstantinidis
, Giansalvatore Mecca, Boris Motik, Paolo Papotti
, Donatello Santoro, Efthymia Tsamoura:
Benchmarking the Chase. PODS 2017: 37-52 - [c49]Enzo Veltri, Donatello Santoro, Giansalvatore Mecca, Paolo Papotti, Jian He, Gouliang Li, Nan Tang:
Interactive Data Repairing: the FALCON Dive. SEBD 2017: 267 - [c48]Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Armando Solar-Lezama
, Nan Tang:
Generating Concise Entity Matching Rules. SIGMOD Conference 2017: 1635-1638 - [i1]Fnu Suya, Yuan Tian, David Evans, Paolo Papotti:
Query-limited Black-box Attacks to Classifiers. CoRR abs/1712.08713 (2017) - 2016
- [j22]Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti, Donatello Santoro:
Benchmarking Data Curation Systems. IEEE Data Eng. Bull. 39(2): 47-62 (2016) - [j21]Ziawasch Abedjan
, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti
, Michael Stonebraker, Nan Tang:
Detecting Data Errors: Where are we and what needs to be done? Proc. VLDB Endow. 9(12): 993-1004 (2016) - [c47]Divy Agrawal, Sanjay Chawla, Ahmed K. Elmagarmid, Zoi Kaoudi
, Mourad Ouzzani, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Nan Tang, Mohammed J. Zaki:
Road to Freedom in Big Data Analytics. EDBT 2016: 479-484 - [c46]Paolo Papotti
:
Data quality between promises and results. ICDE Workshops 2016: 200 - [c45]Ziawasch Abedjan
, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti
, Michael Stonebraker:
DataXFormer: A robust transformation discovery system. ICDE 2016: 1134-1145 - [c44]Shazia Sadiq
, Paolo Papotti
:
Big data quality - whose problem is it? ICDE 2016: 1446-1447 - [c43]Venkata Vamsikrishna Meduri, Paolo Papotti
:
Towards User-Aware Rule Discovery. ISIP 2016: 3-17 - [c42]Jian He, Enzo Veltri
, Donatello Santoro
, Guoliang Li, Giansalvatore Mecca, Paolo Papotti
, Nan Tang:
Interactive and Deterministic Data Cleaning. SIGMOD Conference 2016: 893-907 - [c41]Divy Agrawal, Mouhamadou Lamine Ba, Laure Berti-Équille
, Sanjay Chawla, Ahmed K. Elmagarmid, Hossam Hammady, Yasser Idris, Zoi Kaoudi
, Zuhair Khayyat
, Sebastian Kruse, Mourad Ouzzani, Paolo Papotti
, Jorge-Arnulfo Quiané-Ruiz
, Nan Tang, Mohammed J. Zaki
:
Rheem: Enabling Multi-Platform Task Execution. SIGMOD Conference 2016: 2069-2072 - [c40]Donatello Santoro
, Patricia C. Arocena, Boris Glavic
, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti
:
BART in Action: Error Generation and Empirical Evaluations of Data-Cleaning Systems. SIGMOD Conference 2016: 2161-2164 - 2015
- [j20]Paolo Missier
, Paolo Papotti
:
Editorial. ACM J. Data Inf. Qual. 5(3): 8:1-8:4 (2015) - [j19]Xu Chu, Mourad Ouzzani, John Morcos, Ihab F. Ilyas, Paolo Papotti, Nan Tang, Yin Ye:
KATARA: Reliable Data Cleaning with Knowledge Bases and Crowdsourcing. Proc. VLDB Endow. 8(12): 1952-1955 (2015) - [j18]Zuhair Khayyat
, William Lucia, Meghna Singh
, Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz
, Nan Tang, Panos Kalnis
:
Lightning Fast and Space Efficient Inequality Joins. Proc. VLDB Endow. 8(13): 2074-2085 (2015) - [j17]Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti
, Donatello Santoro:
Messing Up with BART: Error Generation for Evaluating Data-Cleaning Algorithms. Proc. VLDB Endow. 9(2): 36-47 (2015) - [j16]Ziawasch Abedjan
, Cuneyt Gurcan Akcora
, Mourad Ouzzani, Paolo Papotti
, Michael Stonebraker:
Temporal Rules Discovery for Web Data Cleaning. Proc. VLDB Endow. 9(4): 336-347 (2015) - [c39]Ziawasch Abedjan, John Morcos, Michael N. Gubanov, Ihab F. Ilyas, Michael Stonebraker, Paolo Papotti, Mourad Ouzzani:
Dataxformer: Leveraging the Web for Semantic Transformations. CIDR 2015 - [c38]Sebastian Kruse, Paolo Papotti
, Felix Naumann
:
Estimating Data Integration and Cleaning Effort. EDBT 2015: 61-72 - [c37]Paolo Papotti:
Beyond Declarative Data Cleaning. SEBD 2015: 2 - [c36]