


default search action
13th AMTA 2018: Boston, MA, USA - Volume 1: Research Papers
- Colin Cherry, Graham Neubig:

Proceedings of the 13th Conference of the Association for Machine Translation in the Americas, AMTA 2018, Boston, MA, USA, March 17-21, 2018 - Volume 1: Research Papers. Association for Machine Translation in the Americas 2018 - Arianna Bisazza:

Keynote: Unveiling the Linguistic Weaknesses of Neural MT. - Laura Jehl, Stefan Riezler:

Document-Level Information as Side Constraints for Improved Neural Patent Translation. 1-12 - Marianna J. Martindale, Marine Carpuat:

Fluency Over Adequacy: A Pilot Study in Measuring User Trust in Imperfect MT. 13-25 - Rajen Chatterjee, Matteo Negri, Marco Turchi, Frédéric Blain, Lucia Specia:

Combining Quality Estimation and Automatic Post-editing to Enhance Machine Translation output. 26-38 - Costanza Conforti, Matthias Huck, Alexander M. Fraser:

Neural Morphological Tagging of Lemma Sequences for Machine Translation. 39-53 - Angli Liu, Katrin Kirchhoff:

Context Models for OOV Word Translation in Low-Resource Languages. 54-67 - Georg Heigold, Stalin Varanasi, Günter Neumann, Josef van Genabith:

How Robust Are Character-Based Word Embeddings in Tagging and MT Against Wrod Scramlbing or Randdm Nouse? 68-80 - Pintu Lohar, Haithem Afli, Andy Way:

Balancing Translation Quality and Sentiment Preservation (Non-archival Extended Abstract). 81-88 - Tak-Sum Wong, John Lee:

Register-sensitive Translation: a Case Study of Mandarin and Cantonese (Non-archival Extended Abstract). 89-96 - Duygu Ataman, Marcello Federico:

An Evaluation of Two Vocabulary Reduction Methods for Neural Machine Translation. 97-110 - Benjamin Marie, Atsushi Fujita:

A Smorgasbord of Features to Combine Phrase-Based and Neural Machine Translation. 111-124 - Rebecca Marvin, Philipp Koehn:

Exploring Word Sense Disambiguation Abilities of Neural Machine Translation Systems (Non-archival Extended Abstract). 125-131 - Steven Shearing, Christo Kirov, Huda Khayrallah, David Yarowsky:

Improving Low Resource Machine Translation using Morphological Glosses (Non-archival Extended Abstract). 132-139 - Shigehiko Schamoni, Julian Hitschler, Stefan Riezler:

A Dataset and Reranking Method for Multimodal MT of User-Generated Image Captions. 140-153 - Maryam Siahbani, Hassan Shavarani, Ashkan Alinejad, Anoop Sarkar:

Simultaneous Translation using Optimized Segmentation. 154-167 - Jindrich Helcl, Jindrich Libovický, Tom Kocmi, Tomás Musil, Ondrej Cífka, Dusan Varis, Ondrej Bojar:

Neural Monkey: The Current State and Beyond. 168-176 - Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent Nguyen, Jean Senellart, Alexander M. Rush

:
OpenNMT: Neural Machine Translation Toolkit. 177-184 - Graham Neubig, Matthias Sperber, Xinyi Wang, Matthieu Felix, Austin Matthews, Sarguna Padmanabhan, Ye Qi, Devendra Singh Sachan, Philip Arthur, Pierre Godard, John Hewitt, Rachid Riad, Liming Wang:

XNMT: The eXtensible Neural Machine Translation Toolkit. 185-192 - Ashish Vaswani, Samy Bengio, Eugene Brevdo, François Chollet, Aidan N. Gomez, Stephan Gouws, Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, Jakob Uszkoreit:

Tensor2Tensor for Neural Machine Translation. 193-199 - Felix Hieber, Tobias Domhan, Michael J. Denkowski, David Vilar, Artem Sokolov, Ann Clifton, Matt Post:

The Sockeye Neural Machine Translation Toolkit at AMTA 2018. 200-207 - Felix Stahlberg, Danielle Saunders, Gonzalo Iglesias, Bill Byrne:

Why not be Versatile? Applications of the SGNMT Decoder for Machine Translation. 208-216

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














