


default search action
CHIL 2021: Virtual Event, USA
- Marzyeh Ghassemi, Tristan Naumann, Emma Pierson:

ACM CHIL '21: ACM Conference on Health, Inference, and Learning, Virtual Event, USA, April 8-9, 2021. ACM 2021, ISBN 978-1-4503-8359-2 - Weicheng Zhu, Narges Razavian:

Variationally regularized graph-based representation learning for electronic health records. 1-13 - David Dov, Serge Assaad, Shijing Si, Rui Wang, Hongteng Xu, Shahar Ziv Kovalsky

, Jonathan Bell, Danielle Elliott Range, Jonathan Cohen, Ricardo Henao, Lawrence Carin:
Affinitention nets: kernel perspective on attention architectures for set classification with applications to medical text and images. 14-24 - Raouf Kerkouche, Gergely Ács, Claude Castelluccia, Pierre Genevès:

Privacy-preserving and bandwidth-efficient federated learning: an application to in-hospital mortality prediction. 25-35 - Diana Mincu, Eric Loreaux, Shaobo Hou, Sebastien Baur, Ivan Protsyuk, Martin Seneviratne, Anne Mottram, Nenad Tomasev, Alan Karthikesalingam, Jessica Schrouff:

Concept-based model explanations for electronic health records. 36-46 - Konstantin D. Pandl

, Fabian Feiland, Scott Thiebes, Ali Sunyaev:
Trustworthy machine learning for health care: scalable data valuation with the shapley value. 47-57 - Emma Rocheteau, Pietro Liò

, Stephanie L. Hyland:
Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit. 58-68 - Dimitris Spathis

, Ignacio Perez-Pozuelo, Søren Brage, Nicholas J. Wareham, Cecilia Mascolo:
Self-supervised transfer learning of physiological representations from free-living wearable data. 69-78 - Ori Linial

, Neta Ravid, Danny Eytan, Uri Shalit:
Generative ODE modeling with known unknowns. 79-94 - Aniruddh Raghu, John V. Guttag

, Katherine Young
, Eugene Pomerantsev, Adrian V. Dalca, Collin M. Stultz
:
Learning to predict with supporting evidence: applications to clinical risk prediction. 95-104 - Saahil Jain, Akshay Smit, Steven Q. H. Truong, Chanh D. T. Nguyen, Minh-Thanh Huynh, Mudit Jain, Victoria A. Young, Andrew Y. Ng, Matthew P. Lungren, Pranav Rajpurkar:

VisualCheXbert: addressing the discrepancy between radiology report labels and image labels. 105-115 - Alexander Ke

, William Ellsworth, Oishi Banerjee, Andrew Y. Ng, Pranav Rajpurkar:
CheXtransfer: performance and parameter efficiency of ImageNet models for chest X-Ray interpretation. 116-124 - Pranav Rajpurkar, Anirudh Joshi, Anuj Pareek, Andrew Y. Ng, Matthew P. Lungren:

CheXternal: generalization of deep learning models for chest X-ray interpretation to photos of chest X-rays and external clinical settings. 125-132 - Paidamoyo Chapfuwa, Serge Assaad, Shuxi Zeng, Michael J. Pencina, Lawrence Carin, Ricardo Henao:

Enabling counterfactual survival analysis with balanced representations. 133-145 - Bonggun Shin, Sungsoo Park, JinYeong Bak

, Joyce C. Ho:
Controlled molecule generator for optimizing multiple chemical properties. 146-153 - Xin Liu, Ziheng Jiang, Josh Fromm, Xuhai Xu, Shwetak N. Patel, Daniel McDuff:

MetaPhys: few-shot adaptation for non-contact physiological measurement. 154-163 - Jean Feng:

Learning to safely approve updates to machine learning algorithms. 164-173 - Saeed Khorram, Tyler Lawson, Fuxin Li:

iGOS++: integrated gradient optimized saliency by bilateral perturbations. 174-182 - Mohamed F. Ghalwash

, Zijun Yao, Prithwish Chakraborty, James V. Codella, Daby Sow:
Phenotypical ontology driven framework for multi-task learning. 183-192 - Alvin Chan, Anna Korsakova

, Yew-Soon Ong, Fernaldo Richtia Winnerdy, Kah Wai Lim, Anh Tuan Phan:
RNA alternative splicing prediction with discrete compositional energy network. 193-203 - Danliang Ho, Iain Bee Huat Tan, Mehul Motani:

Predictive models for colorectal cancer recurrence using multi-modal healthcare data. 204-213 - Shreshth Saini, Young Seok Jeon, Mengling Feng:

B-SegNet: branched-SegMentor network for skin lesion segmentation. 214-221 - Basil Maag, Stefan Feuerriegel, Mathias Kraus

, Maytal Saar-Tsechansky, Thomas Züger:
Modeling longitudinal dynamics of comorbidities. 222-235 - Laura Manduchi, Matthias Hüser, Martin Faltys

, Julia E. Vogt
, Gunnar Rätsch, Vincent Fortuin:
T-DPSOM: an interpretable clustering method for unsupervised learning of patient health states. 236-245 - Matthew Saponaro, Ajith Vemuri

, Greg Dominick, Keith Decker:
Contextualization and individualization for just-in-time adaptive interventions to reduce sedentary behavior. 246-256 - Matthew B. A. McDermott

, Bret Nestor, Evan Kim, Wancong Zhang, Anna Goldenberg, Peter Szolovits, Marzyeh Ghassemi:
A comprehensive EHR timeseries pre-training benchmark. 257-278 - Haoran Zhang

, Natalie Dullerud, Laleh Seyyed-Kalantari, Quaid Morris, Shalmali Joshi, Marzyeh Ghassemi:
An empirical framework for domain generalization in clinical settings. 279-290 - Guimin Dong

, Lihua Cai, Debajyoti Datta, Shashwat Kumar, Laura E. Barnes, Mehdi Boukhechba:
Influenza-like symptom recognition using mobile sensing and graph neural networks. 291-300

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














