


default search action
7th SMM4H 2022: Gyeongju, Korea
- Graciela Gonzalez-Hernandez, Davy Weissenbacher:

Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task, SMM4H@COLING 2022, Gyeongju, Republic of Korea, October 12 - 17, 2022. Association for Computational Linguistics 2022 - Frontmatter.

- Andrei-Marius Avram, Vasile Pais, Maria Mitrofan:

RACAI@SMM4H'22: Tweets Disease Mention Detection Using a Neural Lateral Inhibitory Mechanism. 1-3 - Xi Liu, Han Zhou, Chang Su:

PingAnTech at SMM4H task1: Multiple pre-trained model approaches for Adverse Drug Reactions. 4-6 - Miguel Ortega-Martín, Alfonso Ardoiz, Oscar Garcia, Jorge Álvarez, Adrián Alonso:

dezzai@SMM4H'22: Tasks 5 & 10 - Hybrid models everywhere. 7-10 - Chenghao Huang, Xiaolu Chen, Yuxi Chen, Yutong Wu, Weimin Yuan, Yan Wang, Yanru Zhang:

zydhjh4593@SMM4H'22: A Generic Pre-trained BERT-based Framework for Social Media Health Text Classification. 11-15 - Sourabh Zanwar, Daniel Wiechmann, Yu Qiao, Elma Kerz:

MANTIS at SMM4H'2022: Pre-Trained Language Models Meet a Suite of Psycholinguistic Features for the Detection of Self-Reported Chronic Stress. 16-18 - Antonio Tamayo, Alexander F. Gelbukh, Diego A. Burgos:

NLP-CIC-WFU at SocialDisNER: Disease Mention Extraction in Spanish Tweets Using Transfer Learning and Search by Propagation. 19-22 - Huabin Yang, Zhongjian Zhang, Yanru Zhang:

yiriyou@SMM4H'22: Stance and Premise Classification in Domain Specific Tweets with Dual-View Attention Neural Networks. 23-26 - Mariia Chizhikova

, Pilar López-Úbeda, Manuel Carlos Díaz-Galiano, Luis Alfonso Ureña López, María Teresa Martín Valdivia:
SINAI@SMM4H'22: Transformers for biomedical social media text mining in Spanish. 27-30 - Gökçe Uludogan

, Zeynep Yirmibesoglu:
BOUN-TABI@SMM4H'22: Text-to-Text Adverse Drug Event Extraction with Data Balancing and Prompting. 31-34 - Chunchen Wei, Ran Bi, Yanru Zhang:

uestcc@SMM4H'22: RoBERTa based Adverse Drug Events Classification on Tweets. 35-37 - Pan He, Yuze Chen, Yanru Zhang:

Zhegu@SMM4H-2022: The Pre-training Tweet & Claim Matching Makes Your Prediction Better. 38-41 - Keshav Kapur, Rajitha Harikrishnan, Sanjay Singh:

MaNLP@SMM4H'22: BERT for Classification of Twitter Posts. 42-43 - Veysel Kocaman, Cabir Celik, Damla Gurbaz, Gursev Pirge, Bunyamin Polat, Halil Saglamlar, Meryem Vildan Sarikaya, Gokhan Turer, David Talby:

John_Snow_Labs@SMM4H'22: Social Media Mining for Health (#SMM4H) with Spark NLP. 44-47 - Antonio Jimeno-Yepes, Karin Verspoor

:
READ-BioMed@SocialDisNER: Adaptation of an Annotation System to Spanish Tweets. 48-51 - Matías Rojas, Jose Barros, Kinan Martin, Mauricio Araneda-Hernandez, Jocelyn Dunstan:

PLN CMM at SocialDisNER: Improving Detection of Disease Mentions in Tweets by Using Document-Level Features. 52-54 - Harsh Verma, Parsa Bagherzadeh, Sabine Bergler:

CLaCLab at SocialDisNER: Using Medical Gazetteers for Named-Entity Recognition of Disease Mentions in Spanish Tweets. 55-57 - Atnafu Lambebo Tonja, Olumide Ebenezer Ojo, Mohammed Arif Khan, Abdul Gafar Manuel Meque, Olga Kolesnikova, Grigori Sidorov, Alexander F. Gelbukh:

CIC NLP at SMM4H 2022: a BERT-based approach for classification of social media forum posts. 58-61 - Tzu-Mi Lin, Chao-Yi Chen, Yu-Wen Tzeng, Lung-Hao Lee:

NCUEE-NLP@SMM4H'22: Classification of Self-reported Chronic Stress on Twitter Using Ensemble Pre-trained Transformer Models. 62-64 - Edgar Morais, José Luís Oliveira, Alina Trifan, Olga Fajarda:

BioInfo@UAVR@SMM4H'22: Classification and Extraction of Adverse Event mentions in Tweets using Transformer Models. 65-67 - Kendrick Cetina, Nuria García-Santa:

FRE at SocialDisNER: Joint Learning of Language Models for Named Entity Recognition. 68-70 - Rosa María Montañés-Salas, Irene López-Bosque, Luis García-Garcés, Rafael del-Hoyo-Alonso:

ITAINNOVA at SocialDisNER: A Transformers cocktail for disease identification in social media in Spanish. 71-74 - Oscar Lithgow-Serrano, Joseph Cornelius, Fabio Rinaldi, Ljiljana Dolamic:

mattica@SMM4H'22: Leveraging sentiment for stance & premise joint learning. 75-77 - Antoine Lain, Wonjin Yoon, Hyunjae Kim, Jaewoo Kang, Ian Simpson:

KU_ED at SocialDisNER: Extracting Disease Mentions in Tweets Written in Spanish. 78-80 - Christopher Palmer, Sedigheh Khademi Habibabadi, Muhammad Javed, Gerardo Luis Dimaguila

, Jim Buttery:
CHAAI@SMM4H'22: RoBERTa, GPT-2 and Sampling - An interesting concoction. 81-84 - Aman Sinha, Cristina García Holgado

, Marianne Clausel, Matthieu Constant:
IAI @ SocialDisNER : Catch me if you can! Capturing complex disease mentions in tweets. 85-89 - Paul Trust, Provia Kadusabe, Ahmed Zahran, Rosane Minghim, Kizito Omala:

UCCNLP@SMM4H'22: Label distribution aware long-tailed learning with post-hoc posterior calibration applied to text classification. 90-94 - Reshma Unnikrishnan, Sowmya Kamath S., Ananthanarayana V. S.:

HaleLab_NITK@SMM4H'22: Adaptive Learning Model for Effective Detection, Extraction and Normalization of Adverse Drug Events from Social Media Data. 95-97 - Yan Zhuang, Yanru Zhang:

Yet@SMM4H'22: Improved BERT-based classification models with Rdrop and PolyLoss. 98-102 - Daniel Claeser, Samantha Kent:

Fraunhofer FKIE @ SMM4H 2022: System Description for Shared Tasks 2, 4 and 9. 103-107 - Vadim Porvatov, Natalia Semenova:

Transformer-based classification of premise in tweets related to COVID-19. 108-110 - Raphael Antonius Frick, Martin Steinebach:

Fraunhofer SIT@SMM4H'22: Learning to Predict Stances and Premises in Tweets related to COVID-19 Health Orders Using Generative Models. 111-113 - Roshan Khatri, Sougata Saha, Souvik Das, Rohini K. Srihari:

UB Health Miners@SMM4H'22: Exploring Pre-processing Techniques To Classify Tweets Using Transformer Based Pipelines. 114-117 - Afrin Sultana, Nihad Karim Chowdhury, Abu Nowshed Chy:

CSECU-DSG@SMM4H'22: Transformer based Unified Approach for Classification of Changes in Medication Treatments in Tweets and WebMD Reviews. 118-122 - Mohammad Zohair, Nidhir Bhavsar, Aakash Bhatnagar, Muskaan Singh:

Innovators @ SMM4H'22: An Ensembles Approach for self-reporting of COVID-19 Vaccination Status Tweets. 123-125 - Vatsal Savaliya, Aakash Bhatnagar, Nidhir Bhavsar, Muskaan Singh:

Innovators@SMM4H'22: An Ensembles Approach for Stance and Premise Classification of COVID-19 Health Mandates Tweets. 126-129 - Beatrice Portelli, Simone Scaboro, Emmanuele Chersoni, Enrico Santus, Giuseppe Serra:

AILAB-Udine@SMM4H'22: Limits of Transformers and BERT Ensembles. 130-134 - Alec Louis Candidato, Akshat Gupta, Xiaomo Liu, Sameena Shah:

AIR-JPMC@SMM4H'22: Classifying Self-Reported Intimate Partner Violence in Tweets with Multiple BERT-based Models. 135-137 - Prabsimran Kaur, Guneet Singh Kohli, Jatin Bedi:

ARGUABLY@SMM4H'22: Classification of Health Related Tweets using Ensemble, Zero-Shot and Fine-Tuned Language Model. 138-142 - Jia Fu, Sirui Li, Hui Ming Yuan, Zhucong Li, Zhen Gan, Yubo Chen

, Kang Liu, Jun Zhao, Shengping Liu:
CASIA@SMM4H'22: A Uniform Health Information Mining System for Multilingual Social Media Texts. 143-147 - Imane Guellil, Jinge Wu, Honghan Wu, Tony Sun, Beatrice Alex:

Edinburgh_UCL_Health@SMM4H'22: From Glove to Flair for handling imbalanced healthcare corpora related to Adverse Drug Events, Change in medication and self-reporting vaccination. 148-152 - Sumam Francis, Marie-Francine Moens:

KUL@SMM4H'22: Template Augmented Adaptive Pre-training for Tweet Classification. 153-155 - Millon Das, Archit Mangrulkar, Ishan Manchanda, Manav Nitin Kapadnis

, Sohan Patnaik:
Enolp musk@SMM4H'22 : Leveraging Pre-trained Language Models for Stance And Premise Classification. 156-159 - Adrian Garcia Hernandez, Leung Wai Liu, Akshat Gupta, Vineeth Ravi, Saheed O. Obitayo, Xiaomo Liu, Sameena Shah:

AIR-JPMC@SMM4H'22: Identifying Self-Reported Spanish COVID-19 Symptom Tweets Through Multiple-Model Ensembling. 160-162 - Leung Wai Liu, Akshat Gupta, Saheed Obitayo, Xiaomo Liu, Sameena Shah:

AIR-JPMC@SMM4H'22: BERT + Ensembling = Too Cool: Using Multiple BERT Models Together for Various COVID-19 Tweet Identification Tasks. 163-167 - Akbar Karimi, Lucie Flek:

CAISA@SMM4H'22: Robust Cross-Lingual Detection of Disease Mentions on Social Media with Adversarial Methods. 168-170 - Omar Adjali, Fréjus A A Laleye, Umang Aggarwal:

OFU@SMM4H'22: Mining Advent Drug Events Using Pretrained Language Models. 171-175 - Orest Xherija, Hojoon Choi:

CompLx@SMM4H'22: In-domain pretrained language models for detection of adverse drug reaction mentions in English tweets. 176-181 - Luis Gascó Sánchez, Darryl Estrada-Zavala, Eulàlia Farré-Maduell, Salvador Lima-López, Antonio Miranda-Escalada, Martin Krallinger:

The SocialDisNER shared task on detection of disease mentions in health-relevant content from social media: methods, evaluation, guidelines and corpora. 182-189 - Vasile Pais, Verginica Barbu Mititelu, Elena Irimia, Maria Mitrofan, Carol Luca Gasan, Roxana Micu:

Romanian micro-blogging named entity recognition including health-related entities. 190-196 - Sourabh Zanwar, Daniel Wiechmann, Yu Qiao, Elma Kerz:

The Best of Both Worlds: Combining Engineered Features with Transformers for Improved Mental Health Prediction from Reddit Posts. 197-202 - Jia-Zhen Michelle Chan, Florian Kunneman, Roser Morante, Lea Lösch, Teun Zuiderent-Jerak:

Leveraging Social Media as a Source for Clinical Guidelines: A Demarcation of Experiential Knowledge. 203-208 - Rabin Adhikari

, Safal Thapaliya
, Nirajan Basnet, Samip Poudel, Aman Shakya, Bishesh Khanal:
COVID-19-related Nepali Tweets Classification in a Low Resource Setting. 209-215 - Vera Davydova, Elena Tutubalina:

SMM4H 2022 Task 2: Dataset for stance and premise detection in tweets about health mandates related to COVID-19. 216-220 - Davy Weissenbacher, Juan M. Banda, Vera Davydova, Darryl Estrada-Zavala, Luis Gascó Sánchez, Yao Ge, Yuting Guo, Ari Z. Klein, Martin Krallinger, Mathias Leddin, Arjun Magge, Raul Rodriguez-Esteban

, Abeed Sarker, Ana Lucía Schmidt, Elena Tutubalina, Graciela Gonzalez-Hernandez:
Overview of the Seventh Social Media Mining for Health Applications (#SMM4H) Shared Tasks at COLING 2022. 221-241

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














