


default search action
12th EMO 2023: Leiden, The Netherlands
- Michael Emmerich

, André H. Deutz
, Hao Wang
, Anna V. Kononova
, Boris Naujoks
, Ke Li
, Kaisa Miettinen
, Iryna Yevseyeva
:
Evolutionary Multi-Criterion Optimization - 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20-24, 2023, Proceedings. Lecture Notes in Computer Science 13970, Springer 2023, ISBN 978-3-031-27249-3
Algorithm Design and Engineering
- Tea Tusar

, Aljosa Vodopija
, Bogdan Filipic
:
Visual Exploration of the Effect of Constraint Handling in Multiobjective Optimization. 3-16 - Fei Liu

, Qingfu Zhang
:
A Two-Stage Algorithm for Integer Multiobjective Simulation Optimization. 17-28 - Ritam Guha

, Kalyanmoy Deb
:
RegEMO: Sacrificing Pareto-Optimality for Regularity in Multi-objective Problem-Solving. 29-42 - Rui Zhong

, Masaharu Munetomo:
Cooperative Coevolutionary NSGA-II with Linkage Measurement Minimization for Large-Scale Multi-objective Optimization. 43-55 - Renzhi Chen, Ke Li

:
Data-Driven Evolutionary Multi-objective Optimization Based on Multiple-Gradient Descent for Disconnected Pareto Fronts. 56-70 - Balija Santoshkumar

, Kalyanmoy Deb
, Lei Chen:
Eliminating Non-dominated Sorting from NSGA-III. 71-85 - António Gaspar-Cunha

, Paulo Costa
, Francisco José Monaco
, Alexandre C. B. Delbem
:
Scalability of Multi-objective Evolutionary Algorithms for Solving Real-World Complex Optimization Problems. 86-100
Machine Learning and Multi-criterion Optimization
- Timo M. Deist

, Monika Grewal
, Frank J. W. M. Dankers, Tanja Alderliesten
, Peter A. N. Bosman:
Multi-objective Learning Using HV Maximization. 103-117 - Phoenix Neale Williams

, Ke Li
, Geyong Min
:
Sparse Adversarial Attack via Bi-objective Optimization. 118-133 - Drishti Bhasin

, Sajag Swami
, Sarthak Sharma
, Saumya Sah
, Dhish Kumar Saxena
, Kalyanmoy Deb
:
Investigating Innovized Progress Operators with Different Machine Learning Methods. 134-146 - Shiqing Liu

, Xueming Yan, Yaochu Jin:
End-to-End Pareto Set Prediction with Graph Neural Networks for Multi-objective Facility Location. 147-161 - Julia Heise, Sanaz Mostaghim:

Online Learning Hyper-Heuristics in Multi-Objective Evolutionary Algorithms. 162-175 - Kaifeng Yang

, Michael Affenzeller
:
Surrogate-assisted Multi-objective Optimization via Genetic Programming Based Symbolic Regression. 176-190 - Kalyanmoy Deb

, Aryan Gondkar, Anirudh Suresh:
Learning to Predict Pareto-Optimal Solutions from Pseudo-weights. 191-204 - Hao Hao, Aimin Zhou:

A Relation Surrogate Model for Expensive Multiobjective Continuous and Combinatorial Optimization. 205-217 - Tomoaki Takagi

, Keiki Takadama, Hiroyuki Sato:
Pareto Front Upconvert by Iterative Estimation Modeling and Solution Sampling. 218-230 - Jinyuan Zhang, Linjun He

, Hisao Ishibuchi:
An Improved Fuzzy Classifier-Based Evolutionary Algorithm for Expensive Multiobjective Optimization Problems with Complicated Pareto Sets. 231-246 - Ping Guo

, Qingfu Zhang
, Xi Lin
:
Approximation of a Pareto Set Segment Using a Linear Model with Sharing Variables. 247-259 - Arnaud Liefooghe

, Sébastien Vérel
, Tinkle Chugh
, Jonathan E. Fieldsend
, Richard Allmendinger
, Kaisa Miettinen
:
Feature-Based Benchmarking of Distance-Based Multi/Many-objective Optimisation Problems: A Machine Learning Perspective. 260-273
Benchmarking and Performance Assessment
- Lie Meng Pang, Yang Nan, Hisao Ishibuchi:

Partially Degenerate Multi-objective Test Problems. 277-290 - Lennart Schäpermeier

, Pascal Kerschke
, Christian Grimme
, Heike Trautmann
:
Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. 291-304 - Sebastian Mai, Tobias Benecke, Sanaz Mostaghim:

MACO: A Real-World Inspired Benchmark for Multi-objective Evolutionary Algorithms. 305-318 - Victoria Johnson

, João A. Duro
, Visakan Kadirkamanathan
, Robin C. Purshouse
:
A Scalable Test Suite for Bi-objective Multidisciplinary Optimization. 319-332 - Hisao Ishibuchi, Yang Nan, Lie Meng Pang:

Performance Evaluation of Multi-objective Evolutionary Algorithms Using Artificial and Real-world Problems. 333-347 - Diana Cristina Valencia-Rodríguez

, Carlos A. Coello Coello
:
A Novel Performance Indicator Based on the Linear Assignment Problem. 348-360 - Angus Kenny, Tapabrata Ray, Hemant Kumar Singh, Xiaodong Li:

A Test Suite for Multi-objective Multi-fidelity Optimization. 361-373
Indicator Design and Complexity Analysis
- Steve Huntsman:

Diversity Enhancement via Magnitude. 377-390 - Yang Nan, Hisao Ishibuchi, Tianye Shu, Ke Shang:

Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems. 391-404 - André H. Deutz

, Michael Emmerich
, Hao Wang
:
The Hypervolume Indicator Hessian Matrix: Analytical Expression, Computational Time Complexity, and Sparsity. 405-418 - Ved Prakash, Sumit Mishra

, Carlos A. Coello Coello:
On the Computational Complexity of Efficient Non-dominated Sort Using Binary Search. 419-432
Applications in Real World Domains
- Krzysztof Michalak

:
Evolutionary Algorithms with Machine Learning Models for Multiobjective Optimization in Epidemics Control. 435-448 - Sagnik Sarkar, Siddhartha Devapujula, Hrishikesh Vidyadhar Ganu, Chaithanya Bandi, Ravindra Babu Tallamraju, Chilamakurthi Vamsikrishna Satya, Siddhant Doshi:

Joint Price Optimization Across a Portfolio of Fashion E-Commerce Products. 449-461 - Clément Legrand

, Diego Cattaruzza, Laetitia Jourdan, Marie-Eléonore Kessaci:
Improving MOEA/D with Knowledge Discovery. Application to a Bi-objective Routing Problem. 462-475 - Ksenia Pereverdieva

, Michael Emmerich
, André H. Deutz, Tessa Ezendam, Thomas Bäck
, Hèrm Hofmeyer
:
The Prism-Net Search Space Representation for Multi-objective Building Spatial Design. 476-489 - Susanne Rosenthal:

Selection Strategies for a Balanced Multi- or Many-Objective Molecular Optimization and Genetic Diversity: A Comparative Study. 490-503 - Paramita Biswas, Anirban Mukhopadhyay:

A Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific Differentially Co-expressed and Functionally Enriched Gene Modules. 504-517 - Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:

Real-World Airline Crew Pairing Optimization: Customized Genetic Algorithm Versus Column Generation Method. 518-531 - Krzysztof Michalak

, Mario Giacobini
:
Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade Movements Prediction. 532-545 - André Thomaser

, Marc-Eric Vogt
, Anna V. Kononova
, Thomas Bäck
:
Transfer of Multi-objectively Tuned CMA-ES Parameters to a Vehicle Dynamics Problem. 546-560
Multi-criteria Decision Making and Interactive Algorithms
- Linjun He

, Yang Nan, Hisao Ishibuchi, Dipti Srinivasan:
Preference-Based Nonlinear Normalization for Multiobjective Optimization. 563-577 - Giomara Lárraga

, Bhupinder Singh Saini
, Kaisa Miettinen
:
Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors. 578-592 - Bekir Afsar

, Johanna M. Silvennoinen
, Kaisa Miettinen
:
A Systematic Way of Structuring Real-World Multiobjective Optimization Problems. 593-605 - Abhiroop Ghosh

, Kalyanmoy Deb
, Ronald C. Averill, Erik D. Goodman
:
IK-EMOViz: An Interactive Knowledge-Based Evolutionary Multi-objective Optimization Framework. 606-619 - Seyed Mahdi Shavarani

, Manuel López-Ibáñez
, Richard Allmendinger
, Joshua D. Knowles
:
An Interactive Decision Tree-Based Evolutionary Multi-objective Algorithm. 620-634

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














