
Thomas Bäck
Person information
- affiliation: Leiden Institute of Advanced Computer Science, Netherlands
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j36]Bas van Stein
, Hao Wang, Wojtek Kowalczyk, Michael Emmerich, Thomas Bäck
:
Cluster-based Kriging approximation algorithms for complexity reduction. Appl. Intell. 50(3): 778-791 (2020) - [j35]Carola Doerr
, Furong Ye, Naama Horesh, Hao Wang
, Ofer M. Shir, Thomas Bäck
:
Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88: 106027 (2020) - [j34]Mozhan Soltani, Felienne Hermans, Thomas Bäck:
The significance of bug report elements. Empir. Softw. Eng. 25(6): 5255-5294 (2020) - [c198]Alexander Hagg
, Mike Preuss
, Alexander Asteroth
, Thomas Bäck
:
An Analysis of Phenotypic Diversity in Multi-solution Optimization. BIOMA 2020: 43-55 - [c197]Markus Thill
, Wolfgang Konen
, Thomas Bäck
:
Time Series Encodings with Temporal Convolutional Networks. BIOMA 2020: 161-173 - [c196]Anna V. Kononova
, Fabio Caraffini, Hao Wang, Thomas Bäck:
Can Single Solution Optimisation Methods Be Structurally Biased? CEC 2020: 1-9 - [c195]Yali Wang, Bas van Stein, Thomas Bäck, Michael Emmerich:
Improving NSGA-III for flexible job shop scheduling using automatic configuration, smart initialization and local search. GECCO Companion 2020: 181-182 - [c194]Diederick Vermetten, Hao Wang, Thomas Bäck, Carola Doerr:
Towards dynamic algorithm selection for numerical black-box optimization: investigating BBOB as a use case. GECCO 2020: 654-662 - [c193]Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Integrated vs. sequential approaches for selecting and tuning CMA-ES variants. GECCO 2020: 903-912 - [c192]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO Companion 2020: 957-974 - [c191]Hao Wang, Carola Doerr, Ofer M. Shir, Thomas Bäck:
Benchmarking and analyzing iterative optimization heuristics with IOHprofiler. GECCO Companion 2020: 1043-1054 - [c190]Rick Boks, Hao Wang, Thomas Bäck
:
A modular hybridization of particle swarm optimization and differential evolution. GECCO Companion 2020: 1418-1425 - [c189]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
A Deep Dive Into Exploring the Preference Hypervolume. ICCC 2020: 394-397 - [c188]Thiago Rios, Bas van Stein, Stefan Menzel, Thomas Bäck, Bernhard Sendhoff, Patricia Wollstadt:
Feature Visualization for 3D Point Cloud Autoencoders. IJCNN 2020: 1-9 - [c187]Ullah Ullah, Zhao Xu, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck
:
Exploring Clinical Time Series Forecasting with Meta-Features in Variational Recurrent Models. IJCNN 2020: 1-9 - [c186]Jiawen Kong, Thiago Rios, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck:
On the Performance of Oversampling Techniques for Class Imbalance Problems. PAKDD (2) 2020: 84-96 - [c185]Alexander Hagg
, Dominik Wilde
, Alexander Asteroth
, Thomas Bäck
:
Designing Air Flow with Surrogate-Assisted Phenotypic Niching. PPSN (1) 2020: 140-153 - [c184]Anna V. Kononova
, Fabio Caraffini
, Hao Wang
, Thomas Bäck
:
Can Compact Optimisation Algorithms Be Structurally Biased? PPSN (1) 2020: 229-242 - [c183]Yali Wang, André H. Deutz, Thomas Bäck, Michael Emmerich:
Improving Many-Objective Evolutionary Algorithms by Means of Edge-Rotated Cones. PPSN (2) 2020: 313-326 - [c182]Jiawen Kong, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck:
Improving Imbalanced Classification by Anomaly Detection. PPSN (1) 2020: 512-523 - [c181]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
Benchmarking a (μ +λ ) Genetic Algorithm with Configurable Crossover Probability. PPSN (2) 2020: 699-713 - [c180]Yali Wang, André H. Deutz, Thomas Bäck, Michael Emmerich:
Edge-Rotated Cone Orders in Multi-objective Evolutionary Algorithms for Improved Convergence and Preference Articulation. SSCI 2020: 165-172 - [c179]Thiago Rios, Jiawen Kong, Bas van Stein, Thomas Bäck, Patricia Wollstadt, Bernhard Sendhoff, Stefan Menzel:
Back To Meshes: Optimal Simulation-ready Mesh Prototypes For Autoencoder-based 3D Car Point Clouds. SSCI 2020: 942-949 - [c178]Raphael Patrick Prager, Heike Trautmann, Hao Wang, Thomas Bäck, Pascal Kerschke:
Per-Instance Configuration of the Modularized CMA-ES by Means of Classifier Chains and Exploratory Landscape Analysis. SSCI 2020: 996-1003 - [c177]Bas van Stein, Hao Wang, Thomas Bäck:
Neural Network Design: Learning from Neural Architecture Search. SSCI 2020: 1341-1349 - [c176]Yali Wang, Bas van Stein, Thomas Bäck, Michael Emmerich:
A Tailored NSGA-III for Multi-objective Flexible Job Shop Scheduling. SSCI 2020: 2746-2753 - [c175]Sibghat Ullah, Duc Anh Nguyen, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck:
Exploring Dimensionality Reduction Techniques for Efficient Surrogate-Assisted optimization. SSCI 2020: 2965-2974 - [c174]Milan Koch
, Hao Wang, Robert Bürgel, Thomas Bäck:
Towards Data-driven Services in Vehicles. VEHITS 2020: 45-52 - [e7]Juan Julián Merelo Guervós, Jonathan M. Garibaldi, Christian Wagner, Thomas Bäck, Kurosh Madani, Kevin Warwick:
Proceedings of the 12th International Joint Conference on Computational Intelligence, IJCCI 2020, Budapest, Hungary, November 2-4, 2020. SCITEPRESS 2020, ISBN 978-989-758-475-6 [contents] - [e6]Thomas Bäck
, Mike Preuss
, André H. Deutz
, Hao Wang
, Carola Doerr
, Michael T. M. Emmerich
, Heike Trautmann
:
Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I. Lecture Notes in Computer Science 12269, Springer 2020, ISBN 978-3-030-58111-4 [contents] - [e5]Thomas Bäck
, Mike Preuss
, André H. Deutz
, Hao Wang
, Carola Doerr
, Michael T. M. Emmerich
, Heike Trautmann
:
Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II. Lecture Notes in Computer Science 12270, Springer 2020, ISBN 978-3-030-58114-5 [contents] - [i33]Andrés Camero, Hao Wang, Enrique Alba, Thomas Bäck:
Bayesian Neural Architecture Search using A Training-Free Performance Metric. CoRR abs/2001.10726 (2020) - [i32]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
Real-World Airline Crew Pairing Optimization: Customized Genetic Algorithm versus Column Generation Method. CoRR abs/2003.03792 (2020) - [i31]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
AirCROP: Airline Crew Pairing Optimizer for Complex Flight Networks Involving Multiple Crew Bases & Billion-Plus Variables. CoRR abs/2003.03994 (2020) - [i30]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
On Initializing Airline Crew Pairing Optimization for Large-scale Complex Flight Networks. CoRR abs/2003.06423 (2020) - [i29]Yali Wang, Bas van Stein, Michael T. M. Emmerich, Thomas Bäck:
A Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling. CoRR abs/2004.06564 (2020) - [i28]Yali Wang, André H. Deutz, Thomas Bäck, Michael T. M. Emmerich:
Improving Many-objective Evolutionary Algorithms by Means of Expanded Cone Orders. CoRR abs/2004.06941 (2020) - [i27]Anna V. Kononova, Fabio Caraffini, Thomas Bäck:
Differential evolution outside the box. CoRR abs/2004.10489 (2020) - [i26]Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, Michael Emmerich:
A Novel Column Generation Heuristic for Airline Crew Pairing Optimization with Large-scale Complex Flight Networks. CoRR abs/2005.08636 (2020) - [i25]Furong Ye, Hao Wang, Carola Doerr, Thomas Bäck:
Benchmarking a $(μ+λ)$ Genetic Algorithm with Configurable Crossover Probability. CoRR abs/2006.05889 (2020) - [i24]Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Towards Dynamic Algorithm Selection for Numerical Black-Box Optimization: Investigating BBOB as a Use Case. CoRR abs/2006.06586 (2020) - [i23]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Discovering outstanding subgroup lists for numeric targets using MDL. CoRR abs/2006.09186 (2020) - [i22]Rick Boks, Hao Wang, Thomas Bäck:
A Modular Hybridization of Particle Swarm Optimization and Differential Evolution. CoRR abs/2006.11886 (2020) - [i21]Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer: Performance Analysis for Iterative Optimization Heuristic. CoRR abs/2007.03953 (2020) - [i20]Bas van Stein, Hao Wang, Thomas Bäck:
Neural Network Design: Learning from Neural Architecture Search. CoRR abs/2011.00521 (2020) - [i19]Veysel Kocaman, Ofer M. Shir, Thomas Bäck:
Improving Model Accuracy for Imbalanced Image Classification Tasks by Adding a Final Batch Normalization Layer: An Empirical Study. CoRR abs/2011.06319 (2020)
2010 – 2019
- 2019
- [j33]Hao Wang, Michael Emmerich, Thomas Bäck
:
Mirrored Orthogonal Sampling for Covariance Matrix Adaptation Evolution Strategies. Evol. Comput. 27(4): 699-725 (2019) - [j32]Kaifeng Yang
, Michael Emmerich, André H. Deutz, Thomas Bäck
:
Efficient computation of expected hypervolume improvement using box decomposition algorithms. J. Glob. Optim. 75(1): 3-34 (2019) - [j31]Kaifeng Yang
, Michael Emmerich, André H. Deutz, Thomas Bäck
:
Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient. Swarm Evol. Comput. 44: 945-956 (2019) - [c173]Milan Koch
, Victor Geraedts, Hao Wang, Martijn Tannemaat, Thomas Bäck
:
Automated Machine Learning for EEG-Based Classification of Parkinson's Disease Patients. BigData 2019: 4845-4852 - [c172]Yali Wang, Steffen Limmer, Markus Olhofer, Michael T. M. Emmerich, Thomas Bäck:
Vehicle Fleet Maintenance Scheduling Optimization by Multi-objective Evolutionary Algorithms. CEC 2019: 442-449 - [c171]Furong Ye, Carola Doerr
, Thomas Bäck
:
Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation. CEC 2019: 2292-2299 - [c170]Hao Wang, Yitan Lou, Thomas Bäck
:
Hyper-Parameter Optimization for Improving the Performance of Grammatical Evolution. CEC 2019: 2649-2656 - [c169]Yali Wang, Michael Emmerich, André H. Deutz, Thomas Bäck
:
Diversity-Indicator Based Multi-Objective Evolutionary Algorithm: DI-MOEA. EMO 2019: 346-358 - [c168]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Modeling user selection in quality diversity. GECCO 2019: 116-124 - [c167]Hao Wang, Thomas Bäck
, Aske Plaat, Michael Emmerich, Mike Preuss
:
On the potential of evolution strategies for neural network weight optimization. GECCO (Companion) 2019: 191-192 - [c166]Samineh Bagheri, Wolfgang Konen, Thomas Bäck:
Solving optimization problems with high conditioning by means of online whitening. GECCO (Companion) 2019: 243-244 - [c165]Naama Horesh, Thomas Bäck, Ofer M. Shir:
Predict or screen your expensive assay: DoE vs. surrogates in experimental combinatorial optimization. GECCO 2019: 274-284 - [c164]Pierluigi Frisco, Timo Bootsma, Thomas Bäck:
Multi-objective genetic algorithms for reducing mark read-out effort in lithographic tests. GECCO (Companion) 2019: 365-366 - [c163]Kaifeng Yang, Pramudita Satria Palar, Michael Emmerich, Koji Shimoyama, Thomas Bäck
:
A multi-point mechanism of expected hypervolume improvement for parallel multi-objective bayesian global optimization. GECCO 2019: 656-663 - [c162]Diederick Vermetten, Sander van Rijn, Thomas Bäck, Carola Doerr
:
Online selection of CMA-ES variants. GECCO 2019: 951-959 - [c161]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO (Companion) 2019: 1095-1112 - [c160]Marios Kefalas
, Steffen Limmer, Asteris Apostolidis
, Markus Olhofer, Michael Emmerich, Thomas Bäck
:
A tabu search-based memetic algorithm for the multi-objective flexible job shop scheduling problem. GECCO (Companion) 2019: 1254-1262 - [c159]Borja Calvo, Ofer M. Shir, Josu Ceberio
, Carola Doerr
, Hao Wang, Thomas Bäck, José Antonio Lozano:
Bayesian performance analysis for black-box optimization benchmarking. GECCO (Companion) 2019: 1789-1797 - [c158]Carola Doerr
, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck:
Benchmarking discrete optimization heuristics with IOHprofiler. GECCO (Companion) 2019: 1798-1806 - [c157]Sneha Saha, Thiago Rios, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck
, Xin Yao, Zhao Xu, Patricia Wollstadt:
Learning Time-Series Data of Industrial Design Optimization using Recurrent Neural Networks. ICDM Workshops 2019: 785-792 - [c156]Bas van Stein, Hao Wang, Thomas Bäck
:
Automatic Configuration of Deep Neural Networks with Parallel Efficient Global Optimization. IJCNN 2019: 1-7 - [c155]Sina Däubener, Sebastian Schmitt, Hao Wang, Peter Krause, Thomas Bäck:
Anomaly Detection in Univariate Time Series: An Empirical Comparison of Machine Learning Algorithms. ICDM 2019: 161-175 - [c154]Markus Thill, Sina Däubener, Wolfgang Konen, Thomas Bäck:
Anomaly Detection in Electrocardiogram Readings with Stacked LSTM Networks. ITAT 2019: 17-25 - [c153]Can Wang, Thomas Bäck, Holger H. Hoos, Mitra Baratchi, Steffen Limmer, Markus Olhofer:
Automated Machine Learning for Short-term Electric Load Forecasting. SSCI 2019: 314-321 - [c152]Thiago Rios, Bernhard Sendhoff, Stefan Menzel, Thomas Bäck
, Bas van Stein
:
On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization. SSCI 2019: 791-798 - [c151]Sibghat Ullah
, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck
:
An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization. SSCI 2019: 819-828 - [c150]Thiago Rios, Patricia Wollstadt, Bas van Stein
, Thomas Bäck
, Zhao Xu, Bernhard Sendhoff, Stefan Menzel:
Scalability of Learning Tasks on 3D CAE Models Using Point Cloud Autoencoders. SSCI 2019: 1367-1374 - [c149]Xin Guo, Bas van Stein, Thomas Bäck
:
A New Approach Towards the Combined Algorithm Selection and Hyper-parameter Optimization Problem. SSCI 2019: 2042-2049 - [c148]Teddy Etoeharnowo, Koen Castelein, Hao Wang, Thomas Bäck:
Switching Between Swarm Optimization Algorithms During a Run: An Empirical Study. SSCI 2019: 2295-2302 - [c147]Jiawen Kong, Wojtek Kowalczyk, Duc Anh Nguyen, Thomas Bäck
, Stefan Menzel:
Hyperparameter Optimisation for Improving Classification under Class Imbalance. SSCI 2019: 3072-3078 - [i18]Furong Ye, Carola Doerr, Thomas Bäck:
Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation. CoRR abs/1901.05573 (2019) - [i17]Diederick Vermetten, Sander van Rijn, Thomas Bäck, Carola Doerr:
Online Selection of CMA-ES Variants. CoRR abs/1904.07801 (2019) - [i16]Samineh Bagheri, Wolfgang Konen, Thomas Bäck:
SACOBRA with Online Whitening for Solving Optimization Problems with High Conditioning. CoRR abs/1904.08397 (2019) - [i15]Kaifeng Yang, Michael Emmerich, André H. Deutz, Thomas Bäck:
Efficient Computation of Expected Hypervolume Improvement Using Box Decomposition Algorithms. CoRR abs/1904.12672 (2019) - [i14]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Modeling User Selection in Quality Diversity. CoRR abs/1907.06912 (2019) - [i13]Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Sequential vs. Integrated Algorithm Selection and Configuration: A Case Study for the Modular CMA-ES. CoRR abs/1912.05899 (2019) - [i12]Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck:
Benchmarking Discrete Optimization Heuristics with IOHprofiler. CoRR abs/1912.09237 (2019) - 2018
- [c146]Hao Wang, Michael Emmerich, Thomas Bäck:
Cooling Strategies for the Moment-Generating Function in Bayesian Global Optimization. CEC 2018: 1-8 - [c145]Sheir Yarkoni, Aske Plaat, Thomas Bäck
:
First Results Solving Arbitrarily Structured Maximum Independent Set Problems Using Quantum Annealing. CEC 2018: 1-6 - [c144]Thomas Bäck
:
Algorithms for Simulation-Based Optimization Problems. ECMS 2018: 5-7 - [c143]Koen van der Blom
, Thomas Bäck:
A new foraging-based algorithm for online scheduling. GECCO 2018: 53-60 - [c142]Sander van Rijn
, Sebastian Schmitt, Markus Olhofer, Matthijs van Leeuwen, Thomas Bäck:
Multi-fidelity surrogate model approach to optimization. GECCO (Companion) 2018: 225-226 - [c141]Hao Wang, Thomas Bäck:
Ranking empirical cumulative distribution functions using stochastic and pareto dominance. GECCO (Companion) 2018: 257-258 - [c140]Carola Doerr
, Furong Ye, Sander van Rijn
, Hao Wang, Thomas Bäck:
Towards a theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1 + λ) EA variants on onemax and leadingones. GECCO 2018: 951-958 - [c139]Ofer M. Shir, Thomas Bäck:
Sequential experimentation by evolutionary algorithms. GECCO (Companion) 2018: 956-976 - [c138]Pramudita Satria Palar, Kaifeng Yang, Koji Shimoyama, Michael Emmerich, Thomas Bäck
:
Multi-objective aerodynamic design with user preference using truncated expected hypervolume improvement. GECCO 2018: 1333-1340 - [c137]Ofer M. Shir, Carola Doerr
, Thomas Bäck
:
Compiling a benchmarking test-suite for combinatorial black-box optimization: a position paper. GECCO (Companion) 2018: 1753-1760 - [c136]Milan Koch
, Hao Wang, Thomas Bäck
:
Machine Learning for Predicting the Damaged Parts of a Low Speed Vehicle Crash. ICDIM 2018: 179-184 - [c135]Milan Koch
, Thomas Bäck
:
Machine Learning for Predicting the Impact Point of a Low Speed Vehicle Crash. ICMLA 2018: 1432-1437 - [c134]Theodoros Georgiou, Sebastian Schmitt, Markus Olhofer, Yu Liu, Thomas Bäck
, Michael S. Lew:
Learning Fluid Flows. IJCNN 2018: 1-8 - [c133]Bas van Stein
, Hao Wang, Wojtek Kowalczyk, Thomas Bäck
:
A Novel Uncertainty Quantification Method for Efficient Global Optimization. IPMU (3) 2018: 480-491 - [c132]Roy de Winter, Bas van Stein, Matthys Dijkman, Thomas Bäck
:
Designing Ships Using Constrained Multi-objective Efficient Global Optimization. LOD 2018: 191-203 - [c131]Sander van Rijn
, Carola Doerr, Thomas Bäck:
Towards an Adaptive CMA-ES Configurator. PPSN (1) 2018: 54-65 - [c130]Alexander Hagg, Alexander Asteroth, Thomas Bäck
:
Prototype Discovery Using Quality-Diversity. PPSN (1) 2018: 500-511 - [c129]Hugo Manuel Proença, Ruben Klijn, Thomas Bäck
, Matthijs van Leeuwen:
Identifying flight delay patterns using diverse subgroup discovery. SSCI 2018: 60-67 - [i11]Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Prototype Discovery using Quality-Diversity. CoRR abs/1807.09488 (2018) - [i10]Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, Thomas Bäck:
Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ) EA Variants on OneMax and LeadingOnes. CoRR abs/1808.05850 (2018) - [i9]Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, Thomas Bäck:
IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics. CoRR abs/1810.05281 (2018) - [i8]Bas van Stein, Hao Wang, Thomas Bäck:
Automatic Configuration of Deep Neural Networks with EGO. CoRR abs/1810.05526 (2018) - 2017
- [j30]Samineh Bagheri, Wolfgang Konen, Michael Emmerich, Thomas Bäck:
Self-adjusting parameter control for surrogate-assisted constrained optimization under limited budgets. Appl. Soft Comput. 61: 377-393 (2017) - [j29]Jiaqi Zhao, Vítor Basto Fernandes, Licheng Jiao, Iryna Yevseyeva, Asep Maulana
, Rui Li, Thomas Bäck, Ke Tang, Michael T. M. Emmerich:
Corrigendum to 'Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms' [Information Sciences volumes 367-368 (2016) 80-104]. Inf. Sci. 403: 55 (2017) - [j28]Zhiwei Yang, Jan-Paul van Osta, Barry D. Van Veen, Rick van Krevelen
, Richard van Klaveren, Andries Stam, Joost N. Kok, Thomas Bäck
, Michael Emmerich:
Dynamic vehicle routing with time windows in theory and practice. Nat. Comput. 16(1): 119-134 (2017) - [c128]Koen van der Blom
, Sjonnie Boonstra, Hèrm Hofmeyer, Thomas Bäck
, Michael T. M. Emmerich:
Configuring advanced evolutionary algorithms for multicriteria building spatial design optimisation. CEC 2017: 1803-1810 - [c127]Markus Thill, Wolfgang Konen, Thomas Bäck
:
Online anomaly detection on the webscope S5 dataset: A comparative study. EAIS 2017: 1-8 - [c126]Hao Wang
, André H. Deutz, Thomas Bäck
, Michael Emmerich:
Hypervolume Indicator Gradient Ascent Multi-objective Optimization. EMO 2017: 654-669 - [c125]Sander van Rijn
, Hao Wang
, Bas van Stein, Thomas Bäck
:
Algorithm configuration data mining for CMA evolution strategies. GECCO 2017: 737-744 - [c124]Ofer M. Shir, Thomas Bäck, Joshua D. Knowles
, Richard Allmendinger
:
Sequential experimentation by evolutionary algorithms. GECCO (Companion) 2017: 828-851 - [c123]Hao Wang
, Bas van Stein, Michael T. M. Emmerich, Thomas Bäck:
Time complexity reduction in efficient global optimization using cluster kriging. GECCO 2017: 889-896 - [c122]Marco Schönfelder, Valentin Protschky, Thomas Bäck
:
Reconstructing fixed time traffic light cycles by camera data analytics. ITSC 2017: 1-7 - [c121]Thierry van der Spek, Bas van Stein, Marcel van der Holst, Thomas Bäck:
A multi-method simulation of a high-frequency bus line. ITSC 2017: 1-6 - [c120]Sheir Yarkoni, Hao Wang, Aske Plaat, Thomas Bäck:
Boosting Quantum Annealing Performance Using Evolution Strategies for Annealing Offsets Tuning. QTOP@NetSys 2017: 157-168 - [c119]Hao Wang, Bas van Stein, Michael Emmerich, Thomas Bäck
:
A new acquisition function for Bayesian optimization based on the moment-generating function. SMC 2017: 507-512 - [i7]Bas van Stein, Hao Wang, Wojtek Kowalczyk, Michael T. M. Emmerich, Thomas Bäck:
Cluster-based Kriging Approximation Algorithms for Complexity Reduction. CoRR abs/1702.01313 (2017) - [i6]Martin Hofmann, Florian Neukart, Thomas Bäck:
Artificial Intelligence and Data Science in the Automotive Industry. CoRR abs/1709.01989 (2017) - 2016
- [j27]Zhiwei Yang, Michael Emmerich, Thomas Bäck
, Joost N. Kok:
Multi-objective inventory routing with uncertain demand using population-based metaheuristics. Integr. Comput. Aided Eng. 23(3): 205-220 (2016) - [j26]Jiaqi Zhao, Vítor Basto Fernandes
, Licheng Jiao, Iryna Yevseyeva, Asep Maulana
, Rui Li, Thomas Bäck
, Ke Tang, Michael T. M. Emmerich:
Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms. Inf. Sci. 367-368: 80-104 (2016) - [c118]