


default search action
13th EMO 2025: Canberra, ACT, Australia - Part II
- Hemant K. Singh

, Tapabrata Ray
, Joshua D. Knowles
, Xiaodong Li
, Juergen Branke
, Bing Wang
, Akira Oyama
:
Evolutionary Multi-Criterion Optimization - 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4-7, 2025, Proceedings, Part II. Lecture Notes in Computer Science 15513, Springer 2025, ISBN 978-981-96-3537-5
Algorithm Analysis
- Hisao Ishibuchi, Lie Meng Pang:

Visual Explanations of Some Problematic Search Behaviors of Frequently-Used EMO Algorithms. 3-16 - Tianye Shu, Hisao Ishibuchi, Yang Nan, Lie Meng Pang:

Numerical Analysis of Pareto Set Modeling. 17-30 - Qiaozhi Zhang, Miqing Li, Ke Tang, Xin Yao:

When Is Non-deteriorating Population Update in MOEAs Beneficial? 31-45 - Sumit Mishra, Ved Prakash, Carlos A. Coello Coello:

Analysis of Merge Non-dominated Sorting Algorithm. 46-57 - Ksenia Pereverdieva

, André H. Deutz, Tessa Ezendam, Thomas Bäck
, Hèrm Hofmeyer, Michael T. M. Emmerich
:
Comparative Analysis of Indicators for Multi-objective Diversity Optimization. 58-71 - Yang Nan, Hisao Ishibuchi, Lie Meng Pang:

Performance Analysis of Constrained Evolutionary Multi-objective Optimization Algorithms on Artificial and Real-World Problems. 72-84 - Angel E. Rodriguez-Fernandez

, Carlos Ignacio Hernández Castellanos
, Oliver Schütze
:
On the Approximation of the Entire Pareto Front of a Constrained Multi-objective Optimization Problem. 85-98 - Yang Nan, Hisao Ishibuchi, Lie Meng Pang:

Small Population Size is Enough in Many Cases with External Archives. 99-113
Surrogates and Machine Learning
- Jack M. Buckingham

, Sebastian Rojas-Gonzalez, Juergen Branke:
Knowledge Gradient for Multi-objective Bayesian Optimization with Decoupled Evaluations. 117-132 - Qingyu Mo, João A. Duro, Robin C. Purshouse:

Surrogate Strategies for Scalarisation-Based Multi-objective Bayesian Optimizers. 133-146 - Balija Santoshkumar

, Kalyanmoy Deb
:
A Mixed-Fidelity Evaluation Algorithm for Efficient Constrained Multi- and Many-Objective Optimization: First Results. 147-162 - Yihao Yang, Yuji Sato

:
Efficient and Accurate Surrogate-Assisted Approach to Multi-objective Optimization Using Deep Neural Networks. 163-177 - Fei Liu

, Xi Lin
, Shunyu Yao
, Zhenkun Wang
, Xialiang Tong
, Mingxuan Yuan
, Qingfu Zhang
:
Large Language Model for Multiobjective Evolutionary Optimization. 178-191 - Franz Herm

, Atanu Mazumdar
, Tinkle Chugh
:
Multi-objective Multi-agent Reinforcement Learning for Autonomous Driving in Mixed-Traffic Environments. 192-207 - Dasun Shalila Balasooriya

, Alan Blair
, Ben Wilks
, Craig A. Wheeler
, Tahir Jauhar
, Stephan K. Chalup
:
Parallel TD3 for Policy Gradient-Based Multi-condition Multi-objective Optimisation. 208-222
Multi-criteria Decision Support
- Deepanshu Yadav

, Palaniappan Ramu
, Kalyanmoy Deb
:
Reliability-Based MCDM Using Objective Preferences Under Variable Uncertainty. 225-240 - Bhupinder Singh Saini

, Hemant Kumar Singh
, Babooshka Shavazipour
, Kaisa Miettinen
:
An Efficient Iterative Approach for Uniformly Representing Pareto Fronts. 241-256

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














