


default search action
5th SASHIMI@MICCAI 2020: Lima, Peru
- Ninon Burgos

, David Svoboda
, Jelmer M. Wolterink
, Can Zhao
:
Simulation and Synthesis in Medical Imaging - 5th International Workshop, SASHIMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings. Lecture Notes in Computer Science 12417, Springer 2020, ISBN 978-3-030-59519-7 - Dzung L. Pham, Yi-Yu Chou, Blake E. Dewey, Daniel S. Reich, John A. Butman, Snehashis Roy

:
Contrast Adaptive Tissue Classification by Alternating Segmentation and Synthesis. 1-10 - Filip Rusak, Rodrigo Santa Cruz, Pierrick Bourgeat

, Clinton Fookes, Jurgen Fripp, Andrew P. Bradley
, Olivier Salvado
:
3D Brain MRI GAN-Based Synthesis Conditioned on Partial Volume Maps. 11-20 - Lianrui Zuo, Blake E. Dewey, Aaron Carass, Yufan He, Muhan Shao, Jacob C. Reinhold, Jerry L. Prince:

Synthesizing Realistic Brain MR Images with Noise Control. 21-31 - Pamela R. Jackson

, Andrea Hawkins-Daarud
, Kristin R. Swanson
:
Simulated Diffusion Weighted Images Based on Model-Predicted Tumor Growth. 32-40 - José V. Manjón, José E. Romero, Roberto Vivó Hernando, Gregorio Rubio, Fernando Aparici-Robles

, María de la Iglesia-Vayá, Thomas Tourdias, Pierrick Coupé
:
Blind MRI Brain Lesion Inpainting Using Deep Learning. 41-49 - Hongyu Wang

, Jun Feng, Xiaoying Pan, Di Yang, Bao-ying Chen:
High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations. 50-59 - Reuben R. Shamir

, Ze'ev Bomzon
:
A Method for Tumor Treating Fields Fast Estimation. 60-67 - Yasmina Al Khalil, Sina Amirrajab

, Cristian Lorenz, Jürgen Weese, Marcel Breeuwer:
Heterogeneous Virtual Population of Simulated CMR Images for Improving the Generalization of Cardiac Segmentation Algorithms. 68-79 - Jingya Liu, Yingli Tian

, A. Muhtesem Agildere
, K. Murat Haberal, Mehmet Coskun, Cihan Duzgol, Oguz Akin:
DyeFreeNet: Deep Virtual Contrast CT Synthesis. 80-89 - Nicolas H. Nbonsou Tegang

, Jean-Rassaire Fouefack
, Bhushan Borotikar
, Valérie Burdin
, Tania S. Douglas
, Tinashe E. M. Mutsvangwa
:
A Gaussian Process Model Based Generative Framework for Data Augmentation of Multi-modal 3D Image Volumes. 90-100 - Zi Lin, Manli Zhong, Xiangzhu Zeng, Chuyang Ye:

Frequency-Selective Learning for CT to MR Synthesis. 101-109 - Kerstin Kläser, Pedro Borges, Richard Shaw, Marta Ranzini

, Marc Modat
, David Atkinson
, Kris Thielemans
, Brian F. Hutton, Vicky Goh
, Gary J. Cook
, M. Jorge Cardoso
, Sébastien Ourselin
:
Uncertainty-Aware Multi-resolution Whole-Body MR to CT Synthesis. 110-119 - María Escobar

, Angela Castillo, Andrés Romero, Pablo Arbeláez
:
UltraGAN: Ultrasound Enhancement Through Adversarial Generation. 120-130 - Georg Wimmer, Michael Gadermayr

, Andreas Vécsei, Andreas Uhl:
Improving Endoscopic Decision Support Systems by Translating Between Imaging Modalities. 131-141 - Wanyue Li, Yi He, Jing Wang, Wen Kong, Yiwei Chen, Guohua Shi:

An Unsupervised Adversarial Learning Approach to Fundus Fluorescein Angiography Image Synthesis for Leakage Detection. 142-152 - Manuel Traub

, Johannes Stegmaier
:
Towards Automatic Embryo Staging in 3D+t Microscopy Images Using Convolutional Neural Networks and PointNets. 153-163 - Srijay Deshpande

, Fayyaz A. Minhas
, Nasir M. Rajpoot
:
Train Small, Generate Big: Synthesis of Colorectal Cancer Histology Images. 164-173 - Dejan Stepec, Danijel Skocaj:

Image Synthesis as a Pretext for Unsupervised Histopathological Diagnosis. 174-183 - Ziteng Liu, Ahmet Çakir, Jack H. Noble:

Auditory Nerve Fiber Health Estimation Using Patient Specific Cochlear Implant Stimulation Models. 184-194

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














