


default search action
SASHIMI@MICCAI 2025: Daejeon, South Korea
- Virginia Fernandez

, David Wiesner
, Lianrui Zuo
, Adrià Casamitjana
, Samuel W. Remedios
:
Simulation and Synthesis in Medical Imaging - 10th International Workshop, SASHIMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings. Lecture Notes in Computer Science 16085, Springer 2026, ISBN 978-3-032-05572-9 - Marvin Seyfarth, Salman Ul Hassan Dar, Isabelle Ayx, Matthias Alexander Fink, Stefan O. Schönberg, Hans-Ulrich Kauczor, Sandy Engelhardt:

MedLoRD: A Medical Low-Resource Diffusion Model for High-Resolution 3D CT Image Synthesis. 1-12 - Xianhao Zhou, Jianghao Wu, Huangxuan Zhao, Lei Chen, Shaoting Zhang, Guotai Wang:

GLFC: Unified Global-Local Feature and Contrast Learning with Mamba-Enhanced UNet for Synthetic CT Generation from CBCT. 13-21 - Zheng Zhang, Zechen Zhou, Lei Xiang, Xinyu Song, Yuehua Li:

2D to 3D MR Image Super-Resolution Using Cross-Contrast Guidance. 22-32 - Akira Kudo, Yoshiro Kitamura, Yuki Suzuki, Noriyuki Tomiyama, Masatoshi Hori:

3D Super-Resolution for Enhancing Compression Fracture Detection in Thick-Slice CT: Diffusion Models vs GANs. 33-43 - Denis Nikoshin, Daniil Mikhailenko, Alexander Sovetsky

, Alexander L. Matveyev
, Vladimir Y. Zaitsev
, Lev A. Matveev
:
From Tissue-Mimicking Phantoms to Physics-Based Scans: Synthetic OCT for Few-Shot Foundation Model Training. 44-51 - Cecilia Diana-Albelda

, Arthur Longuefosse
, Álvaro García-Martín, Jesús Bescós
:
Multi-modal Brain MRI Synthesis with nnU-Net: Exploring Segmentation Performance and Cross-Modality Relationships. 52-62 - Liam F. Chalcroft

, Jenny Crinion, Cathy J. Price, John Ashburner:
Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning. 63-74 - Benjamin El-Zein, Dominik Eckert, Andreas Fieselmann, Christopher Syben, Ludwig Ritschl, Steffen Kappler, Sebastian Stober:

From Lines to Shapes: Geometric-Constrained Segmentation of X-Ray Collimators via Hough Transform. 75-83 - Pulkit Khandelwal, Michael Tran Duong, Lisa Levorse, Sydney Lim, Nathaniel Gauthier, Ved Shenoy, Eunice Chung, Amanda Denning, Alejandra Bahena, Winifred Trotman, Christopher Olm, Hamsanandini Radhakrishnan, Ranjit Ittyerah, Karthik Prabhakaran, Gabor Mizsei, Theresa Schuck, John L. Robinson, Daniel T. Ohm, Jeffrey S. Phillips, John A. Detre, Edward B. Lee, David J. Irwin, Corey T. McMillan, M. Dylan Tisdall, Sandhitsu R. Das, David A. Wolk, Paul A. Yushkevich:

VIOLET: Volumetric Image registration via Optimization and Learning for Efficient image Translation. 84-96 - Rebekka Charlotte Peter, Erik Oberschulte, Erik Wu, Atharva Vaidya, Thomas Lindemeier, Eleonora Tagliabue, Franziska Mathis-Ullrich:

Generation of Controllable and Photorealistic Synthetic Cataract Surgery Images: Blending 3D Models and Real-World Data. 97-106 - Pedro Borges, Virginia Fernandez, Parashkev Nachev, Sébastien Ourselin, M. Jorge Cardoso:

Unsupervised MRI Harmonization via Parameter Prediction and Super-Resolved MPMs. 107-116 - Sanduni Pinnawala

, Annabelle Hartanto
, Ivor J. A. Simpson
, Peter A. Wijeratne
:
Learning Mechanistic Subtypes of Neurodegeneration with a Physics-Informed Variational Autoencoder Mixture Model. 117-128 - Arihant Jain

, Sriprabha Ramanarayanan
, Keerthi Ram
, Mohanasankar Sivaprakasam
:
FastDTI: A 3D Scale-Arbitrary Super-Resolution Autoencoder Residual Dense Network for DTI. 129-138 - Prateek Mathur

, Paul Banahan
, Jane Burns, Peter MacMahon
, Aonghus Lawlor
:
Lesion-Aware CT-to-MRI Synthesis Using a Mask-Informed Diffusion with Adaptive-Weighted Loss (MIDAS). 139-148 - Jiaming Cao, Chelsea A. H. Sargeant, Alan McWilliam, Eliana Vasquez Osorio:

Conditional Iterative α-(de)Blending Model for CBCT-to-sCT Synthesis: Towards a Deterministic and Simple Process. 149-158 - Bastian Brandstötter

, Erich Kobler
:
Synthesizing Accurate and Realistic T1-Weighted Contrast-Enhanced MR Images Using Posterior-Mean Rectified Flow. 159-169 - Maya Maya Barbosa Silva, Cleo-Aron Weis, Stefan Porubský

, Sabine Leh, Hrafn Weishaupt
:
Clustering-Based Stain Augmentation: Templates for Periodic Acid-Schiff Biopsy Images. 170-180

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














