


default search action
PGM 2014: Utrecht, The Netherlands
- Linda C. van der Gaag, A. J. Feelders:

Probabilistic Graphical Models - 7th European Workshop, PGM 2014, Utrecht, The Netherlands, September 17-19, 2014. Proceedings. Lecture Notes in Computer Science 8754, Springer 2014, ISBN 978-3-319-11432-3 - David W. Albrecht

, Ann E. Nicholson
, Chris Whittle:
Structural Sensitivity for the Knowledge Engineering of Bayesian Networks. 1-16 - Jacinto Arias, José A. Gámez, Thomas D. Nielsen

, José M. Puerta:
A Pairwise Class Interaction Framework for Multilabel Classification. 17-32 - Ali Ben Mrad, Véronique Delcroix, Sylvain Piechowiak, Philip Leicester

:
From Information to Evidence in a Bayesian Network. 33-48 - Marcus Bendtsen

, José M. Peña:
Learning Gated Bayesian Networks for Algorithmic Trading. 49-64 - Janneke H. Bolt, Silja Renooij

:
Local Sensitivity of Bayesian Networks to Multiple Simultaneous Parameter Shifts. 65-80 - Cory J. Butz, Jhonatan de S. Oliveira, Anders L. Madsen

:
Bayesian Network Inference Using Marginal Trees. 81-96 - Rafael Cabañas, Andrés Cano

, Manuel Gómez-Olmedo, Anders L. Madsen
:
On SPI-Lazy Evaluation of Influence Diagrams. 97-112 - Andrés Cano

, Manuel Gómez-Olmedo, Serafín Moral, Cora B. Pérez-Ariza:
Extended Probability Trees for Probabilistic Graphical Models. 113-128 - Barry R. Cobb:

Mixture of Polynomials Probability Distributions for Grouped Sample Data. 129-144 - Giorgio Corani, Alessandro Antonucci

, Denis Deratani Mauá, Sandra Gabaglio:
Trading off Speed and Accuracy in Multilabel Classification. 145-159 - Cedric De Boom, Jasper De Bock, Arthur Van Camp

, Gert de Cooman:
Robustifying the Viterbi Algorithm. 160-175 - Cassio P. de Campos, Marco Cuccu, Giorgio Corani, Marco Zaffalon

:
Extended Tree Augmented Naive Classifier. 176-189 - Martijn de Jongh, Marek J. Druzdzel:

Evaluation of Rules for Coping with Insufficient Data in Constraint-Based Search Algorithms. 190-205 - Antonio Fernández, Rafael Rumí, José del Sagrado, Antonio Salmerón:

Supervised Classification Using Hybrid Probabilistic Decision Graphs. 206-221 - Gábor Hullám

, Peter Antal:
Towards a Bayesian Decision Theoretic Analysis of Contextual Effect Modifiers. 222-237 - Jidapa Kraisangka, Marek J. Druzdzel:

Discrete Bayesian Network Interpretation of the Cox's Proportional Hazards Model. 238-253 - Johan Kwisthout:

Minimizing Relative Entropy in Hierarchical Predictive Coding. 254-270 - Johan Kwisthout:

Treewidth and the Computational Complexity of MAP Approximations. 271-285 - Anders L. Madsen

, Frank Jensen, Martin Karlsen, Nicolaj Søndberg-Jeppesen:
Bayesian Networks with Function Nodes. 286-301 - Anders L. Madsen

, Frank Jensen, Antonio Salmerón, Martin Karlsen, Helge Langseth, Thomas D. Nielsen
:
A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs. 302-317 - Denis Deratani Mauá:

Equivalences between Maximum a Posteriori Inference in Bayesian Networks and Maximum Expected Utility Computation in Influence Diagrams. 318-333 - Denis Deratani Mauá, Fábio Gagliardi Cozman:

Speeding Up k-Neighborhood Local Search in Limited Memory Influence Diagrams. 334-349 - Wannes Meert, Joost Vennekens:

Inhibited Effects in CP-Logic. 350-365 - Krzysztof Nowak, Marek J. Druzdzel:

Learning Parameters in Canonical Models Using Weighted Least Squares. 366-381 - José M. Peña:

Learning Marginal AMP Chain Graphs under Faithfulness. 382-395 - Aritz Pérez, Christian Blum, José Antonio Lozano:

Learning Maximum Weighted (k+1)-Order Decomposable Graphs by Integer Linear Programming. 396-408 - Mallinali Ramírez-Corona, Luis Enrique Sucar, Eduardo F. Morales:

Multi-label Classification for Tree and Directed Acyclic Graphs Hierarchies. 409-425 - Mauro Scanagatta, Cassio P. de Campos, Marco Zaffalon

:
Min-BDeu and Max-BDeu Scores for Learning Bayesian Networks. 426-441 - Elena Sokolova, Perry Groot, Tom Claassen, Tom Heskes

:
Causal Discovery from Databases with Discrete and Continuous Variables. 442-457 - Dag Sonntag:

On Expressiveness of the AMP Chain Graph Interpretation. 458-470 - Joe Suzuki:

Learning Bayesian Network Structures When Discrete and Continuous Variables Are Present. 471-486 - Sofia Triantafilou, Ioannis Tsamardinos, Anna Roumpelaki:

Learning Neighborhoods of High Confidence in Constraint-Based Causal Discovery. 487-502 - Maarten van der Heijden, Arjen Hommersom:

Causal Independence Models for Continuous Time Bayesian Networks. 503-518 - Gherardo Varando, Concha Bielza

, Pedro Larrañaga
:
Expressive Power of Binary Relevance and Chain Classifiers Based on Bayesian Networks for Multi-label Classification. 519-534 - Jirí Vomlel

, Petr Tichavský:
An Approximate Tensor-Based Inference Method Applied to the Game of Minesweeper. 535-550 - Yang Xiang, Qing Liu:

Compression of Bayesian Networks with NIN-AND Tree Modeling. 551-566 - Nevin Lianwen Zhang

, Xiaofei Wang, Peixian Chen:
A Study of Recently Discovered Equalities about Latent Tree Models Using Inverse Edges. 567-580 - Yun Zhou, Norman E. Fenton

, Martin Neil:
An Extended MPL-C Model for Bayesian Network Parameter Learning with Exterior Constraints. 581-596

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














