


default search action
PGM 2024: De Lindenberg, Nijmegen, the Netherlands
- Johan Kwisthout, Silja Renooij:

International Conference on Probabilistic Graphical Models, De Lindenberg, Nijmegen, the Netherlands, 11-13 September 2024. Proceedings of Machine Learning Research 246, PMLR 2024 - Johan Kwisthout, Silja Renooij:

Preface. i-iv - José M. Peña:

Alternative Measures of Direct and Indirect Effects. 1-19 - Sourabh Balgi, José M. Peña, Adel Daoud:

ρ-GNF: A Copula-based Sensitivity Analysis to Unobserved Confounding Using Normalizing Flows. 20-37 - Malte Luttermann, Johann Machemer, Marcel Gehrke:

Efficient Detection of Commutative Factors in Factor Graphs. 38-56 - Barry R. Cobb:

LIMID Quality Control Models for Increasing Failure Rate Processes. 57-69 - Itai Feigenbaum, Devansh Arpit, Shelby Heinecke, Juan Carlos Niebles, Weiran Yao, Huan Wang, Caiming Xiong, Silvio Savarese:

On the Unlikelihood of D-Separation. 70-92 - Cory J. Butz, Anders L. Madsen, Jhonatan de S. Oliveira:

Fast Arc-Reversal. 93-105 - Gerlise Chan, Tom Claassen, Holger H. Hoos, Tom Heskes, Mitra Baratchi:

AutoCD: Automated Machine Learning for Causal Discovery Algorithms. 106-132 - Zeliha Yildirim, Barbaros Yet:

Modelling Shared Decision Making Interactions using Influence Diagrams. 133-146 - Neville Kenneth Kitson, Anthony C. Constantinou:

Eliminating Variable Order Instability in Greedy Score-Based Structure Learning. 147-163 - Sourabh Balgi, José M. Peña, Adel Daoud:

Counterfactually-Equivalent Structural Causal Modelling Using Causal Graphical Normalizing Flows. 164-181 - Manuele Leonelli, Gherardo Varando:

Context-Specific Refinements of Bayesian Network Classifiers. 182-198 - Ignacio Echave-Sustaeta Rodríguez, Frank Röttger:

Latent Gaussian Graphical Models with Golazo Penalty. 199-212 - David Strieder, Mathias Drton:

Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity. 213-230 - Jack Storror Carter, Manuele Leonelli, Eva Riccomagno, Gherardo Varando:

Learning Staged Trees from Incomplete Data. 231-252 - Yurou Liang, Oleksandr Zadorozhnyi, Mathias Drton:

Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models. 253-272 - Soroush Ghandi, Benjamin Quost, Cassio de Campos:

Soft Learning Probabilistic Circuits. 273-294 - Mykola Lukashchuk, Ismail Senöz, Bert de Vries:

Q-conjugate Message Passing for Efficient Bayesian Inference. 295-311 - Konstantina Lelova, Gregory F. Cooper, Sofia Triantafillou:

Learning Causal Markov Boundaries with Mixed Observational and Experimental Data. 312-326 - Bernardo Williams, Hanlin Yu, Marcelo Hartmann, Arto Klami:

Geometric No-U-Turn Samplers: Concepts and Evaluation. 327-347 - Anna Rodum Bjøru, Rafael Cabañas, Helge Langseth, Antonio Salmerón:

A Divide and Conquer Approach for Solving Structural Causal Models. 348-360 - Maarten C. Vonk, Sebastiaan Brand, Ninoslav Malekovic, Thomas Bäck, Alfons Laarman, Anna V. Kononova:

Balancing Computational Cost and Accuracy in Inference of Continuous Bayesian Networks. 361-381 - Moritz Schauer, Marcel Wienöbst:

Causal Structure Learning With Momentum: Sampling Distributions Over Markov Equivalence Classes. 382-400 - Iván Pérez, Jirí Vomlel:

Enhancing Bayesian Networks with Psychometric Models. 401-414 - Daniel Zaragoza-Pellicer, Concha Bielza, Pedro Larrañaga:

Multi-objective Counterfactuals in Bayesian Classifiers with Estimation of Distribution Algorithms. 415-426 - Aleksandra Petrova, Javier Larrosa, Emma Rollon:

An Adaptive Implicit Hitting Set Algorithm for MAP and MPE Inference. 427-437 - Galia Weidl, Stefan Berres, Anders L. Madsen, Johannes Daxenberger, Annegret Aulbach:

Exploring Argument Mining and Bayesian Networks for Assessing Topics for City Project Proposals. 438-451 - Florian Peter Busch, Moritz Willig, Jonas Seng, Kristian Kersting, Devendra Singh Dhami:

Ψnet: Efficient Causal Modeling at Scale. 452-469 - Jirí Vomlel, Ales Kubena, Martin Smíd, Josefina Weinerova:

Uncovering Relationships using Bayesian Networks: A Case Study on Conspiracy Theories. 470-485 - Madhumita Kundu, Pekka Parviainen, Saket Saurabh:

Time-Approximation Trade-Offs for Learning Bayesian Networks. 486-497 - Sebastián Bejos, Luis Enrique Sucar, Eduardo F. Morales:

Estimating Bounds on Causal Effects Considering Unmeasured Common Causes. 498-514 - Maurice Wenig, Hanno Barschel, Joachim Giesen, Andreas Goral, Mark Blacher:

Serving MPE Queries on Tensor Networks by Computing Derivatives. 515-527 - Taurai Muvunza, Yang Li, Ercan Engin Kuruoglu:

Cauchy Graphical Models. 528-542

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














