


default search action
SDM 2020: Cincinnati, Ohio, USA
- Carlotta Demeniconi, Nitesh V. Chawla:

Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020. SIAM 2020, ISBN 978-1-61197-623-6The conference was canceled because of the coronavirus pandemic, the reviewed papers are published in this volume. - Akihiro Yamaguchi

, Shigeru Maya, Kohei Maruchi, Ken Ueno:
LTSpAUC: Learning Time-series Shapelets for Optimizing Partial AUC. 1-9 - Erik Scharwächter, Emmanuel Müller:

Two-Sample Testing for Event Impacts in Time Series. 10-18 - Yang Li, Buyue Qian, Xianli Zhang, Hui Liu:

Knowledge guided diagnosis prediction via graph spatial-temporal network. 19-27 - Tyler Wilson, Pang-Ning Tan

, Lifeng Luo:
Convolutional Methods for Predictive Modeling of Geospatial Data. 28-36 - Suhas Thejaswi, Aristides Gionis:

Pattern detection in large temporal graphs using algebraic fingerprints. 37-45 - Suwen Lin, Xian Wu, Gonzalo J. Martínez, Nitesh V. Chawla

:
Filling Missing Values on Wearable-Sensory Time Series Data. 46-54 - Julia Lasserre, Abdul-Saboor Sheikh, Evgenii Koriagin, Urs Bergmann, Roland Vollgraf, Reza Shirvany:

Meta-Learning for Size and Fit Recommendation in Fashion. 55-63 - Zhiwei Liu

, Mengting Wan, Stephen D. Guo, Kannan Achan, Philip S. Yu:
BasConv: Aggregating Heterogeneous Interactions for Basket Recommendation with Graph Convolutional Neural Network. 64-72 - Hengrui Zhang, Julian J. McAuley:

Stacked Mixed-Order Graph Convolutional Networks for Collaborative Filtering. 73-81 - Rui Ding, Guibing Guo, Xiaochun Yang, Bowei Chen, Zhirong Liu, Xiuqiang He:

BiGAN: Collaborative Filtering with Bidirectional Generative Adversarial Networks. 82-90 - Xunqiang Jiang, Binbin Hu, Yuan Fang

, Chuan Shi:
Multiplex Memory Network for Collaborative Filtering. 91-99 - Buru Chang, Yookyung Koh, Donghyeon Park, Jaewoo Kang:

Content-Aware Successive Point-of-Interest Recommendation. 100-108 - Zahra Ghafoori, Christopher Leckie:

Deep Multi-sphere Support Vector Data Description. 109-117 - Adrian Englhardt, Holger Trittenbach, Dennis Vetter

, Klemens Böhm:
Finding the Sweet Spot: Batch Selection for One-Class Active Learning. 118-126 - Vincent Vercruyssen

, Wannes Meert
, Jesse Davis
:
"Now you see it, now you don't!" Detecting Suspicious Pattern Absences in Continuous Time Series. 127-135 - Li Zhang, Yifeng Gao, Jessica Lin:

Semantic Discord: Finding Unusual Local Patterns for Time Series. 136-144 - Adrian Englhardt, Klemens Böhm:

Exploring the Unknown - Query Synthesis in One-Class Active Learning. 145-153 - Mehadi Hassen, Philip K. Chan:

Learning a Neural-network-based Representation for Open Set Recognition. 154-162 - Chi-Cheng Chiu, Pin-Yen Lin, Chih-Jen Lin:

Two-variable Dual Coordinate Descent Methods for Linear SVM with/without the Bias Term. 163-171 - Naoto Ohsaka

, Tomoya Sakai, Akihiro Yabe:
A Predictive Optimization Framework for Hierarchical Demand Matching. 172-180 - Hung-Yi Chou, Pin-Yen Lin, Chih-Jen Lin:

Dual Coordinate-Descent Methods for Linear One-Class SVM and SVDD. 181-189 - Xinyan Li, Qilong Gu, Yingxue Zhou, Tiancong Chen, Arindam Banerjee:

Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization. 190-198 - Peng Xu, Fred Roosta

, Michael W. Mahoney:
Second-order Optimization for Non-convex Machine Learning: an Empirical Study. 199-207 - Hongyuan You, Furkan Kocayusufoglu, Ambuj K. Singh:

DANR: Discrepancy-aware Network Regularization. 208-216 - Guiliang Liu, Xu Li, Mingming Sun, Ping Li:

An Advantage Actor-Critic Algorithm with Confidence Exploration for Open Information Extraction. 217-225 - Rong Zhang, Qifei Zhou, Bo Wu, Weiping Li, Tong Mo:

What Do Questions Exactly Ask? MFAE: Duplicate Question Identification with Multi-Fusion Asking Emphasis. 226-234 - Bo Yang, Kejun Huang, Nicholas D. Sidiropoulos

:
Identifying Potential Investors with Data Driven Approaches. 235-243 - Gianni Costa

, Riccardo Ortale
:
Document Clustering Meets Topic Modeling with Word Embeddings. 244-252 - Guruprasad Nayak

, Rahul Ghosh, Xiaowei Jia, Varun Mithal, Vipin Kumar:
Semi-supervised Classification using Attention-based Regularization on Coarse-resolution Data. 253-261 - Tomoki Ito, Kota Tsubouchi

, Hiroki Sakaji, Tatsuo Yamashita, Kiyoshi Izumi
:
SSNN: Sentiment Shift Neural Network. 262-270 - Ruocheng Guo, Jundong Li, Huan Liu:

Counterfactual Evaluation of Treatment Assignment Functions with Networked Observational Data. 271-279 - Hongjing Zhang, S. S. Ravi, Ian Davidson:

A Graph-Based Approach for Active Learning in Regression. 280-288 - Charu C. Aggarwal, Yao Li, Philip S. Yu:

On Supervised Change Detection in Graph Streams. 289-297 - Aritra Ghosh

, Saayan Mitra, Somdeb Sarkhel, Viswanathan Swaminathan:
Optimal Bidding Strategy without Exploration in Real-time Bidding. 298-306 - Wentao Wang, Suhang Wang

, Wenqi Fan
, Zitao Liu, Jiliang Tang:
Global-and-Local Aware Data Generation for the Class Imbalance Problem. 307-315 - Jay S. Stanley III, Scott Gigante, Guy Wolf, Smita Krishnaswamy:

Harmonic Alignment. 316-324 - Ricky Laishram, Ahmet Erdem Sariyüce, Tina Eliassi-Rad, Ali Pinar, Sucheta Soundarajan:

Residual Core Maximization: An Efficient Algorithm for Maximizing the Size of the k-Core. 325-333 - Yi He

, Sheng Chen, Thu Nguyen
, Bruce A. Wade, Xindong Wu:
Deep Matrix Tri-Factorization: Mining Vertex-wise Interactions in Multi-Space Attributed Graphs. 334-342 - Christian Bauckhage, Rafet Sifa, Stefan Wrobel:

Adiabatic Quantum Computing for Max-Sum Diversification. 343-351 - Wenqi Fan

, Yao Ma, Han Xu, Xiaorui Liu, Jianping Wang, Qing Li
, Jiliang Tang:
Deep Adversarial Canonical Correlation Analysis. 352-360 - Yan Zhang, Zhao Zhang

, Zheng Zhang, Mingbo Zhao, Li Zhang, Zhengjun Zha, Meng Wang:
Deep Self-representative Concept Factorization Network for Representation Learning. 361-369 - Fan Yang, Ninghao Liu, Mengnan Du, Kaixiong Zhou, Shuiwang Ji

, Xia Hu:
Deep Neural Networks with Knowledge Instillation. 370-378 - Xin Dai, Xiangnan Kong, Xinyue Liu, John Boaz Lee, Constance M. Moore:

Dual-Attention Recurrent Networks for Affine Registration of Neuroimaging Data. 379-387 - Siwu Liu, Ji Hwan Park, Shinjae Yoo

:
Efficient and Effective Graph Convolution Networks. 388-396 - Rafael Rêgo Drumond, Lukas Brinkmeyer, Josif Grabocka, Lars Schmidt-Thieme

:
HIDRA: Head Initialization across Dynamic targets for Robust Architectures. 397-405 - Yuta Saito, Hayato Sakata, Kazuhide Nakata:

Cost-Effective and Stable Policy Optimization Algorithm for Uplift Modeling with Multiple Treatments. 406-414 - Ulf Johansson, Tuwe Löfström

:
Well-calibrated and specialized probability estimation trees. 415-423 - James R. Foulds, Rashidul Islam, Kamrun Naher Keya, Shimei Pan:

Bayesian Modeling of Intersectional Fairness: The Variance of Bias. 424-432 - Fattaneh Jabbari, Gregory F. Cooper:

An Instance-Specific Algorithm for Learning the Structure of Causal Bayesian Networks Containing Latent Variables. 433-441 - Sara Alaee, Alireza Abdoli, Christian R. Shelton, Amy C. Murillo, Alec C. Gerry, Eamonn J. Keogh:

Features or Shape? Tackling the False Dichotomy of Time Series Classification. 442-450 - Jingzheng Tu, Guoxian Yu, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang

:
Attention-Aware Answers of the Crowd. 451-459 - Timothy LaRock, Vahan Nanumyan, Ingo Scholtes, Giona Casiraghi, Tina Eliassi-Rad, Frank Schweitzer:

HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks. 460-468 - Yinghua Zhang, Yu Zhang, Ying Wei

, Kun Bai, Yangqiu Song, Qiang Yang:
Fisher Deep Domain Adaptation. 469-477 - Lu Cheng, Ruocheng Guo, K. Selçuk Candan, Huan Liu:

Representation Learning for Imbalanced Cross-Domain Classification. 478-486 - Anasua Mitra, Priyesh Vijayan, Srinivasan Parthasarathy

, Balaraman Ravindran
:
A Unified Non-Negative Matrix Factorization Framework for Semi Supervised Learning on Graphs. 487-495 - Lutz Oettershagen, Nils M. Kriege

, Christopher Morris
, Petra Mutzel
:
Temporal Graph Kernels for Classifying Dissemination Processes. 496-504 - Charles H. Martin, Michael W. Mahoney:

Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks. 505-513 - Fenglong Ma, Yaqing Wang, Jing Gao, Houping Xiao, Jing Zhou:

Rare Disease Prediction by Generating Quality-Assured Electronic Health Records. 514-522 - Yitao Li, Umar Islambekov, Cuneyt Gurcan Akcora

, Ekaterina Smirnova, Yulia R. Gel, Murat Kantarcioglu:
Dissecting Ethereum Blockchain Analytics: What We Learn from Topology and Geometry of the Ethereum Graph? 523-531 - Arka Daw, R. Quinn Thomas

, Cayelan C. Carey, Jordan S. Read, Alison P. Appling, Anuj Karpatne:
Physics-Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling. 532-540 - Scott Freitas, Andrew Wicker, Duen Horng (Polo) Chau

, Joshua Neil:
D2M: Dynamic Defense and Modeling of Adversarial Movement in Networks. 541-549 - Rongrong Tao, Baojian Zhou, Feng Chen, David Mares, Patrick Butler, Naren Ramakrishnan

, Ryan Kennedy:
Detecting Media Self-Censorship without Explicit Training Data. 550-558 - Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan

, Danesh K. Tafti, Anuj Karpatne:
PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly. 559-567 - Ryuta Matsuno

, Aristides Gionis:
Improved mixing time for k-subgraph sampling. 568-576 - Ekta Gujral

, Georgios Theocharous, Evangelos E. Papalexakis:
SPADE: Streaming PARAFAC2 DEcomposition for Large Datasets. 577-585 - Junning Deng, Bo Kang, Jefrey Lijffijt, Tijl De Bie:

Explainable Subgraphs with Surprising Densities: A Subgroup Discovery Approach. 586-594 - Wenyi Xiao, Huan Zhao, Vincent W. Zheng, Yangqiu Song:

Vertex-reinforced Random Walk for Network Embedding. 595-603 - Changgee Chang

, Jihwan Oh, Qi Long:
GRIA: Graphical Regularization for Integrative Analysis. 604-612 - Zeinab S. Jalali, Weixiang Wang, Myunghwan Kim, Hema Raghavan, Sucheta Soundarajan:

On the Information Unfairness of Social Networks. 613-521 - Shigeru Maya, Akihiro Yamaguchi

, Kaneharu Nishino, Ken Ueno:
Lag-Aware Multivariate Time-Series Segmentation. 622-630 - John Boaz Lee, Xiangnan Kong, Constance M. Moore, Nesreen K. Ahmed

:
Deep Parametric Model for Discovering Group-cohesive Functional Brain Regions. 631-639 - Chieh Wu, Zulqarnain Khan, Stratis Ioannidis

, Jennifer G. Dy:
Deep Kernel Learning for Clustering. 640-648 - Guangyi Zhang, Aristides Gionis:

Maximizing diversity over clustered data. 649-657 - Xiaoqiang Yan, Yiqiao Mao

, Shizhe Hu, Yangdong Ye:
Heterogeneous Dual-Task Clustering with Visual-Textual Information. 658-666 - Yorgos Tsitsikas, Evangelos E. Papalexakis:

NSVD: Normalized Singular Value Deviation Reveals Number of Latent Factors in Tensor Decomposition. 667-675

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














