default search action
Charu C. Aggarwal
Charu Aggarwal 0001
Person information
- affiliation: IBM T. J. Watson Research Center, Yorktown, NY, USA
- affiliation: Indian Institute of Technology Kanpur, Department of Computer Science and Engineering, India
Other persons with the same name
- Charu Aggarwal 0002 — University of Delhi, Department of Computer Science, India
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [j112]Zahra Zamanzadeh Darban, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi:
CARLA: Self-supervised contrastive representation learning for time series anomaly detection. Pattern Recognit. 157: 110874 (2025) - 2024
- [j111]Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu, Charu Aggarwal, Chang-Tien Lu:
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks. ACM Comput. Surv. 56(5): 126:1-126:42 (2024) - [j110]Ke Sun, Feng Xia, Jiaying Liu, Bo Xu, Vidya Saikrishna, Charu C. Aggarwal:
Attributed Graph Force Learning. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4502-4515 (2024) - [j109]Ciyuan Peng, Tao Tang, Qiuyang Yin, Xiaomei Bai, Suryani Lim, Charu C. Aggarwal:
Physics-Informed Explainable Continual Learning on Graphs. IEEE Trans. Neural Networks Learn. Syst. 35(9): 11761-11772 (2024) - [c254]Yuying Zhao, Yu Wang, Yi Zhang, Pamela J. Wisniewski, Charu C. Aggarwal, Tyler Derr:
Leveraging Opposite Gender Interaction Ratio as a Path towards Fairness in Online Dating Recommendations Based on User Sexual Orientation. AAAI 2024: 22547-22555 - [c253]Charu C. Aggarwal:
Ensembles for Outlier Detection and Evaluation. CIKM 2024: 1 - [c252]Pengfei He, Han Xu, Jie Ren, Yingqian Cui, Shenglai Zeng, Hui Liu, Charu C. Aggarwal, Jiliang Tang:
Sharpness-Aware Data Poisoning Attack. ICLR 2024 - [c251]Teng Xiao, Huaisheng Zhu, Zhiwei Zhang, Zhimeng Guo, Charu C. Aggarwal, Suhang Wang, Vasant G. Honavar:
Efficient Contrastive Learning for Fast and Accurate Inference on Graphs. ICML 2024 - [c250]Long Vu, Peter Kirchner, Charu C. Aggarwal, Horst Samulowitz:
Instance-Level Metalearning for Outlier Detection. IJCAI 2024: 2379-2387 - [c249]Wangyang Ying, Dongjie Wang, Xuanming Hu, Yuanchun Zhou, Charu C. Aggarwal, Yanjie Fu:
Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning. KDD 2024: 3966-3976 - [c248]Saket Sathe, Charu Aggarwal, Horst Samulowitz, Deepak S. Turaga:
Feature-Engineered Random Forests. SDM 2024: 100-108 - [i61]Hongliang Chi, Wei Jin, Charu Aggarwal, Yao Ma:
Precedence-Constrained Winter Value for Effective Graph Data Valuation. CoRR abs/2402.01943 (2024) - [i60]Jin Li, Shoujin Wang, Qi Zhang, Longbing Cao, Fang Chen, Xiuzhen Zhang, Dietmar Jannach, Charu C. Aggarwal:
Causal Learning for Trustworthy Recommender Systems: A Survey. CoRR abs/2402.08241 (2024) - [i59]Yuying Zhao, Yu Wang, Yi Zhang, Pamela J. Wisniewski, Charu C. Aggarwal, Tyler Derr:
Leveraging Opposite Gender Interaction Ratio as a Path towards Fairness in Online Dating Recommendations Based on User Sexual Orientation. CoRR abs/2402.12541 (2024) - [i58]Zaitian Wang, Pengfei Wang, Kunpeng Liu, Pengyang Wang, Yanjie Fu, Chang-Tien Lu, Charu C. Aggarwal, Jian Pei, Yuanchun Zhou:
A Comprehensive Survey on Data Augmentation. CoRR abs/2405.09591 (2024) - [i57]Wangyang Ying, Dongjie Wang, Xuanming Hu, Yuanchun Zhou, Charu C. Aggarwal, Yanjie Fu:
Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning. CoRR abs/2405.16879 (2024) - [i56]Xueqi Cheng, Yu Wang, Yunchao Liu, Yuying Zhao, Charu C. Aggarwal, Tyler Derr:
Edge Classification on Graphs: New Directions in Topological Imbalance. CoRR abs/2406.11685 (2024) - [i55]Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu C. Aggarwal, Guansong Pang:
Deep Graph Anomaly Detection: A Survey and New Perspectives. CoRR abs/2409.09957 (2024) - [i54]Sharmishtha Dutta, Alex Gittens, Mohammed J. Zaki, Charu C. Aggarwal:
Replacing Paths with Connection-Biased Attention for Knowledge Graph Completion. CoRR abs/2410.00876 (2024) - 2023
- [j108]Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, Charu Aggarwal:
Graph Lifelong Learning: A Survey. IEEE Comput. Intell. Mag. 18(1): 32-51 (2023) - [j107]Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, Sourav Medya:
A Survey on Explainability of Graph Neural Networks. IEEE Data Eng. Bull. 46(2): 35-63 (2023) - [j106]Yiqi Wang, Yao Ma, Wei Jin, Chaozhuo Li, Charu Aggarwal, Jiliang Tang:
Customized Graph Nerual Networks. IEEE Data Eng. Bull. 46(2): 108-125 (2023) - [j105]Feng Xia, Leman Akoglu, Charu Aggarwal, Huan Liu:
Deep Anomaly Analytics: Advancing the Frontier of Anomaly Detection. IEEE Intell. Syst. 38(2): 32-35 (2023) - [j104]Jing Ren, Feng Xia, Ivan Lee, Azadeh Noori Hoshyar, Charu C. Aggarwal:
Graph Learning for Anomaly Analytics: Algorithms, Applications, and Challenges. ACM Trans. Intell. Syst. Technol. 14(2): 28:1-28:29 (2023) - [j103]Kunpeng Liu, Yanjie Fu, Le Wu, Xiaolin Li, Charu Aggarwal, Hui Xiong:
Automated Feature Selection: A Reinforcement Learning Perspective. IEEE Trans. Knowl. Data Eng. 35(3): 2272-2284 (2023) - [j102]Jianxin Li, Lifang He, Hao Peng, Peng Cui, Charu C. Aggarwal, Philip S. Yu:
Guest Editorial Introduction to the Special Issue on Anomaly Detection in Emerging Data-Driven Applications: Theory, Algorithms, and Applications. IEEE Trans. Knowl. Data Eng. 35(12): 11982-11983 (2023) - [c247]Harry Shomer, Yao Ma, Juanhui Li, Bo Wu, Charu C. Aggarwal, Jiliang Tang:
Distance-Based Propagation for Efficient Knowledge Graph Reasoning. EMNLP 2023: 14692-14707 - [c246]Wenqi Fan, Han Xu, Wei Jin, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Qing Li, Jiliang Tang, Jianping Wang, Charu C. Aggarwal:
Jointly Attacking Graph Neural Network and its Explanations. ICDE 2023: 654-667 - [c245]Haoyu Han, Xiaorui Liu, Feng Shi, MohamadAli Torkamani, Charu C. Aggarwal, Jiliang Tang:
Towards Label Position Bias in Graph Neural Networks. NeurIPS 2023 - [i53]Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z. Sheng, Shan Xue, Chuan Zhou, Charu C. Aggarwal, Hao Peng, Wenbin Hu, Edwin Hancock, Pietro Liò:
A Comprehensive Survey of Graph-level Learning. CoRR abs/2301.05860 (2023) - [i52]Zitai Qiu, Jia Wu, Jian Yang, Xing Su, Charu C. Aggarwal:
Heterogeneous Social Event Detection via Hyperbolic Graph Representations. CoRR abs/2302.10362 (2023) - [i51]Zhimeng Guo, Teng Xiao, Charu Aggarwal, Hui Liu, Suhang Wang:
Counterfactual Learning on Graphs: A Survey. CoRR abs/2304.01391 (2023) - [i50]Pengfei He, Han Xu, Jie Ren, Yingqian Cui, Hui Liu, Charu C. Aggarwal, Jiliang Tang:
Sharpness-Aware Data Poisoning Attack. CoRR abs/2305.14851 (2023) - [i49]Haoyu Han, Xiaorui Liu, Feng Shi, MohamadAli Torkamani, Charu C. Aggarwal, Jiliang Tang:
Towards Label Position Bias in Graph Neural Networks. CoRR abs/2305.15822 (2023) - [i48]Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu C. Aggarwal, Sourav Medya:
A Survey on Explainability of Graph Neural Networks. CoRR abs/2306.01958 (2023) - [i47]Zhichao Hou, Xitong Zhang, Wei Wang, Charu C. Aggarwal, Xiaorui Liu:
Can Directed Graph Neural Networks be Adversarially Robust? CoRR abs/2306.02002 (2023) - [i46]Yuying Zhao, Yu Wang, Yunchao Liu, Xueqi Cheng, Charu C. Aggarwal, Tyler Derr:
Fairness and Diversity in Recommender Systems: A Survey. CoRR abs/2307.04644 (2023) - [i45]Harry Shomer, Yao Ma, Juanhui Li, Bo Wu, Charu C. Aggarwal, Jiliang Tang:
Distance-Based Propagation for Efficient Knowledge Graph Reasoning. CoRR abs/2311.01024 (2023) - 2022
- [b10]Charu C. Aggarwal:
Machine Learning for Text, Second Edition. Springer 2022, ISBN 978-3-030-96622-5, pp. 1-532 - [j101]Zhiqiang Hu, Roy Ka-Wei Lee, Charu C. Aggarwal, Aston Zhang:
Text Style Transfer: A Review and Experimental Evaluation. SIGKDD Explor. 24(1): 14-45 (2022) - [j100]Charu C. Aggarwal:
An Interview with Dr. Charu Aggarwal, Winner of ACM SIGKDD 2022 Service Award. SIGKDD Explor. 24(2): 3-4 (2022) - [j99]Nurendra Choudhary, Charu C. Aggarwal, Karthik Subbian, Chandan K. Reddy:
Self-supervised Short-text Modeling through Auxiliary Context Generation. ACM Trans. Intell. Syst. Technol. 13(3): 51:1-51:21 (2022) - [j98]Charu C. Aggarwal:
Communication from the Editor-in-Chief: State of the ACM Transactions on Knowledge Discovery from Data. ACM Trans. Knowl. Discov. Data 16(2): 21e:1-21e:2 (2022) - [j97]Guansong Pang, Charu Aggarwal, Chunhua Shen, Nicu Sebe:
Editorial Deep Learning for Anomaly Detection. IEEE Trans. Neural Networks Learn. Syst. 33(6): 2282-2286 (2022) - [c244]Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Chuan Zhou, Hao Peng, Quan Z. Sheng, Charu C. Aggarwal:
DAGAD: Data Augmentation for Graph Anomaly Detection. ICDM 2022: 259-268 - [c243]Wei Jin, Xiaorui Liu, Yao Ma, Charu C. Aggarwal, Jiliang Tang:
Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective. KDD 2022: 709-719 - [c242]Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su, Chuan Zhou, Quan Z. Sheng, Leman Akoglu, Charu C. Aggarwal:
Dual-discriminative Graph Neural Network for Imbalanced Graph-level Anomaly Detection. NeurIPS 2022 - [c241]Shoujin Wang, Qi Zhang, Liang Hu, Xiuzhen Zhang, Yan Wang, Charu Aggarwal:
Sequential/Session-based Recommendations: Challenges, Approaches, Applications and Opportunities. SIGIR 2022: 3425-3428 - [c240]Nidhi Rastogi, Sharmishtha Dutta, Alex Gittens, Mohammed J. Zaki, Charu C. Aggarwal:
TINKER: A framework for Open source Cyberthreat Intelligence. TrustCom 2022: 1569-1574 - [c239]Feng Xia, Renaud Lambiotte, Charu Aggarwal:
GraphLearning'22: 1st International Workshop on Graph Learning. WWW (Companion Volume) 2022: 1004-1005 - [i44]Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, Charu Aggarwal:
Graph Lifelong Learning: A Survey. CoRR abs/2202.10688 (2022) - [i43]Shoujin Wang, Qi Zhang, Liang Hu, Xiuzhen Zhang, Yan Wang, Charu Aggarwal:
Sequential/Session-based Recommendations: Challenges, Approaches, Applications and Opportunities. CoRR abs/2205.10759 (2022) - [i42]Ge Zhang, Jia Wu, Jian Yang, Shan Xue, Wenbin Hu, Chuan Zhou, Hao Peng, Quan Z. Sheng, Charu Aggarwal:
Graph-level Neural Networks: Current Progress and Future Directions. CoRR abs/2205.15555 (2022) - [i41]Wei Jin, Xiaorui Liu, Yao Ma, Charu C. Aggarwal, Jiliang Tang:
Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective. CoRR abs/2206.07743 (2022) - [i40]Shijie Zhou, Zhimeng Guo, Charu C. Aggarwal, Xiang Zhang, Suhang Wang:
Link Prediction on Heterophilic Graphs via Disentangled Representation Learning. CoRR abs/2208.01820 (2022) - [i39]Djallel Bouneffouf, Charu C. Aggarwal:
Survey on Applications of Neurosymbolic Artificial Intelligence. CoRR abs/2209.12618 (2022) - [i38]Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Chuan Zhou, Hao Peng, Quan Z. Sheng, Charu C. Aggarwal:
DAGAD: Data Augmentation for Graph Anomaly Detection. CoRR abs/2210.09766 (2022) - [i37]Zahra Zamanzadeh Darban, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi:
Deep Learning for Time Series Anomaly Detection: A Survey. CoRR abs/2211.05244 (2022) - [i36]Jing Ren, Feng Xia, Azadeh Noori Hoshyar, Charu C. Aggarwal:
Graph Learning for Anomaly Analytics: Algorithms, Applications, and Challenges. CoRR abs/2212.05532 (2022) - 2021
- [b9]Charu C. Aggarwal:
Artificial Intelligence - A Textbook. Springer 2021, ISBN 978-3-030-72356-9, pp. 1-483 - [j96]Liang Duan, Shuai Ma, Charu Aggarwal, Saket Sathe:
Improving spectral clustering with deep embedding, cluster estimation and metric learning. Knowl. Inf. Syst. 63(3): 675-694 (2021) - [j95]Debmalya Mandal, Sourav Medya, Brian Uzzi, Charu Aggarwal:
MetaLearning with Graph Neural Networks: Methods and Applications. SIGKDD Explor. 23(2): 13-22 (2021) - [j94]Pengyang Wang, Xiaolin Li, Yu Zheng, Charu Aggarwal, Yanjie Fu:
Spatiotemporal Representation Learning for Driving Behavior Analysis: A Joint Perspective of Peer and Temporal Dependencies. IEEE Trans. Knowl. Data Eng. 33(2): 728-741 (2021) - [j93]Yuxiang Ren, Charu C. Aggarwal, Jiawei Zhang:
ActiveIter: Meta Diagram Based Active Learning in Social Networks Alignment. IEEE Trans. Knowl. Data Eng. 33(5): 1848-1860 (2021) - [c238]Wei Jin, Xiaorui Liu, Yao Ma, Tyler Derr, Charu C. Aggarwal, Jiliang Tang:
Graph Feature Gating Networks. CIKM 2021: 813-822 - [c237]Enyan Dai, Charu Aggarwal, Suhang Wang:
NRGNN: Learning a Label Noise Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. KDD 2021: 227-236 - [c236]Guansong Pang, Charu C. Aggarwal:
Toward Explainable Deep Anomaly Detection. KDD 2021: 4056-4057 - [c235]Zhiqiang Hu, Roy Ka-Wei Lee, Charu C. Aggarwal:
Syntax Matters! Syntax-Controlled in Text Style Transfer. RANLP 2021: 566-575 - [c234]Charu C. Aggarwal, Yao Li, Philip S. Yu:
Signature-Based Anomaly Detection in Networks. SDM 2021: 109-117 - [c233]Guansong Pang, Longbing Cao, Charu Aggarwal:
Deep Learning for Anomaly Detection: Challenges, Methods, and Opportunities. WSDM 2021: 1127-1130 - [i35]Nidhi Rastogi, Sharmishtha Dutta, Mohammed J. Zaki, Alex Gittens, Charu C. Aggarwal:
TINKER: A framework for Open source Cyberthreat Intelligence. CoRR abs/2102.05571 (2021) - [i34]Debmalya Mandal, Sourav Medya, Brian Uzzi, Charu Aggarwal:
Meta-Learning with Graph Neural Networks: Methods and Applications. CoRR abs/2103.00137 (2021) - [i33]Yang Gao, Yi-Fan Li, Yu Lin, Charu C. Aggarwal, Latifur Khan:
SetConv: A New Approach for Learning from Imbalanced Data. CoRR abs/2104.06313 (2021) - [i32]Wei Jin, Xiaorui Liu, Yao Ma, Tyler Derr, Charu C. Aggarwal, Jiliang Tang:
Graph Feature Gating Networks. CoRR abs/2105.04493 (2021) - [i31]Enyan Dai, Charu C. Aggarwal, Suhang Wang:
NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs. CoRR abs/2106.04714 (2021) - [i30]Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu, Charu C. Aggarwal, Chang-Tien Lu:
Bridging the Gap between Spatial and Spectral Domains: A Theoretical Framework for Graph Neural Networks. CoRR abs/2107.10234 (2021) - [i29]Wenqi Fan, Wei Jin, Xiaorui Liu, Han Xu, Xianfeng Tang, Suhang Wang, Qing Li, Jiliang Tang, Jianping Wang, Charu C. Aggarwal:
Jointly Attacking Graph Neural Network and its Explanations. CoRR abs/2108.03388 (2021) - [i28]Zhiqiang Hu, Roy Ka-Wei Lee, Charu C. Aggarwal:
Syntax Matters! Syntax-Controlled in Text Style Transfer. CoRR abs/2108.05869 (2021) - [i27]Yu Wang, Charu Aggarwal, Tyler Derr:
Distance-wise Prototypical Graph Neural Network in Node Imbalance Classification. CoRR abs/2110.12035 (2021) - 2020
- [b8]Charu C. Aggarwal:
Linear Algebra and Optimization for Machine Learning - A Textbook. Springer 2020, ISBN 978-3-030-40343-0, pp. 1-495 - [j92]Charu Aggarwal:
An Interview with Dr. Charu Aggarwal, SIGKDD Innovation Award Winner. SIGKDD Explor. 22(1): 1-3 (2020) - [j91]Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, Jiliang Tang:
Adversarial Attacks and Defenses on Graphs. SIGKDD Explor. 22(2): 19-34 (2020) - [c232]Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu C. Aggarwal, Prasenjit Mitra, Suhang Wang:
Joint Modeling of Local and Global Temporal Dynamics for Multivariate Time Series Forecasting with Missing Values. AAAI 2020: 5956-5963 - [c231]Djallel Bouneffouf, Irina Rish, Charu C. Aggarwal:
Survey on Applications of Multi-Armed and Contextual Bandits. CEC 2020: 1-8 - [c230]Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu C. Aggarwal, Prasenjit Mitra, Suhang Wang:
Investigating and Mitigating Degree-Related Biases in Graph Convoltuional Networks. CIKM 2020: 1435-1444 - [c229]Yang Gao, Yi-Fan Li, Yu Lin, Charu C. Aggarwal, Latifur Khan:
SetConv: A New Approach for Learning from Imbalanced Data. EMNLP (1) 2020: 1284-1294 - [c228]Juan-Hui Li, Yao Ma, Yiqi Wang, Charu C. Aggarwal, Chang-Dong Wang, Jiliang Tang:
Graph Pooling with Representativeness. ICDM 2020: 302-311 - [c227]Djallel Bouneffouf, Charu C. Aggarwal, Thanh Hoang, Udayan Khurana, Horst Samulowitz, Beat Buesser, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish Rawat, Martin Wistuba, Alexander G. Gray:
Survey on Automated End-to-End Data Science? IJCNN 2020: 1-9 - [c226]Charu C. Aggarwal, Yao Li, Philip S. Yu:
On Supervised Change Detection in Graph Streams. SDM 2020: 289-297 - [c225]Tyler Derr, Yao Ma, Wenqi Fan, Xiaorui Liu, Charu C. Aggarwal, Jiliang Tang:
Epidemic Graph Convolutional Network. WSDM 2020: 160-168 - [i26]Yiqi Wang, Yao Ma, Charu C. Aggarwal, Jiliang Tang:
Non-IID Graph Neural Networks. CoRR abs/2005.12386 (2020) - [i25]Nidhi Rastogi, Sharmishtha Dutta, Mohammed J. Zaki, Alex Gittens, Charu C. Aggarwal:
MALOnt: An Ontology for Malware Threat Intelligence. CoRR abs/2006.11446 (2020) - [i24]Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu C. Aggarwal, Prasenjit Mitra, Suhang Wang:
Graph Convolutional Networks against Degree-Related Biases. CoRR abs/2006.15643 (2020) - [i23]Zhiqiang Hu, Roy Ka-Wei Lee, Charu C. Aggarwal:
Text Style Transfer: A Review and Experiment Evaluation. CoRR abs/2010.12742 (2020)
2010 – 2019
- 2019
- [j90]Michele Dallachiesa, Charu C. Aggarwal, Themis Palpanas:
Improving Classification Quality in Uncertain Graphs. ACM J. Data Inf. Qual. 11(1): 3:1-3:20 (2019) - [c224]Bowen Dong, Charu C. Aggarwal, Philip S. Yu:
The Link Regression Problem in Graph Streams. IEEE BigData 2019: 1088-1095 - [c223]Suhang Wang, Charu C. Aggarwal, Huan Liu:
Beyond word2vec: Distance-graph Tensor Factorization for Word and Document Embeddings. CIKM 2019: 1041-1050 - [c222]Kemilly Dearo Garcia, Elaine Ribeiro de Faria, Cláudio Rebelo de Sá, João Mendes-Moreira, Charu C. Aggarwal, André C. P. L. F. de Carvalho, Joost N. Kok:
Ensemble Clustering for Novelty Detection in Data Streams. DS 2019: 460-470 - [c221]Yuxiang Ren, Charu C. Aggarwal, Jiawei Zhang:
Meta Diagram Based Active Social Networks Alignment. ICDE 2019: 1690-1693 - [c220]Liang Duan, Charu C. Aggarwal, Shuai Ma, Saket Sathe:
Improving Spectral Clustering with Deep Embedding and Cluster Estimation. ICDM 2019: 170-179 - [c219]Karthik S. Gurumoorthy, Amit Dhurandhar, Guillermo A. Cecchi, Charu C. Aggarwal:
Efficient Data Representation by Selecting Prototypes with Importance Weights. ICDM 2019: 260-269 - [c218]Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Bo Zong, Haifeng Chen, Wei Wang:
Self-Attentive Attributed Network Embedding Through Adversarial Learning. ICDM 2019: 758-767 - [c217]Saket Sathe, Charu C. Aggarwal:
Nearest Neighbor Classifiers Versus Random Forests and Support Vector Machines. ICDM 2019: 1300-1305 - [c216]Bowen Dong, Charu C. Aggarwal, Philip S. Yu:
Transfer Learning for Network Classification. IJCNN 2019: 1-8 - [c215]Lingfei Wu, Ian En-Hsu Yen, Siyu Huo, Liang Zhao, Kun Xu, Liang Ma, Shouling Ji, Charu C. Aggarwal:
Efficient Global String Kernel with Random Features: Beyond Counting Substructures. KDD 2019: 520-528 - [c214]Yao Ma, Suhang Wang, Charu C. Aggarwal, Jiliang Tang:
Graph Convolutional Networks with EigenPooling. KDD 2019: 723-731 - [c213]Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, Charu C. Aggarwal:
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding. KDD 2019: 1418-1428 - [c212]Yao Ma, Suhang Wang, Charu C. Aggarwal, Dawei Yin, Jiliang Tang:
Multi-dimensional Graph Convolutional Networks. SDM 2019: 657-665 - [i22]Yuxiang Ren, Charu C. Aggarwal, Jiawei Zhang:
Meta Diagram based Active Social Networks Alignment. CoRR abs/1902.04220 (2019) - [i21]Yao Ma, Suhang Wang, Charu C. Aggarwal, Jiliang Tang:
Graph Convolutional Networks with EigenPooling. CoRR abs/1904.13107 (2019) - [i20]Charu C. Aggarwal, Djallel Bouneffouf, Horst Samulowitz, Beat Buesser, Thanh Hoang, Udayan Khurana, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish Rawat, Martin Wistuba, Alexander G. Gray:
How can AI Automate End-to-End Data Science? CoRR abs/1910.14436 (2019) - [i19]Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu C. Aggarwal, Prasenjit Mitra, Suhang Wang:
Joint Modeling of Local and Global Temporal Dynamics for Multivariate Time Series Forecasting with Missing Values. CoRR abs/1911.10273 (2019) - [i18]Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, Charu C. Aggarwal:
Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding. CoRR abs/1911.11119 (2019) - [i17]Lingfei Wu, Ian En-Hsu Yen, Siyu Huo, Liang Zhao, Kun Xu, Liang Ma, Shouling Ji, Charu C. Aggarwal:
Efficient Global String Kernel with Random Features: Beyond Counting Substructures. CoRR abs/1911.11121 (2019) - 2018