default search action
Jesse Davis
Person information
- affiliation: Katholieke Universiteit Leuven, Department of Computer Science, Belgium
- affiliation: University of Washington, Department of Computer Science and Engineering, Seattle, WA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j26]Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, Jesse Davis:
Machine learning with a reject option: a survey. Mach. Learn. 113(5): 3073-3110 (2024) - [j25]Arne De Brabandere, Tim Op De Beéck, Kilian Hendrickx, Wannes Meert, Jesse Davis:
TSFuse: automated feature construction for multiple time series data. Mach. Learn. 113(8): 5001-5056 (2024) - [j24]Jesse Davis, Lotte Bransen, Laurens Devos, Arne Jaspers, Wannes Meert, Pieter Robberechts, Jan Van Haaren, Maaike Van Roy:
Methodology and evaluation in sports analytics: challenges, approaches, and lessons learned. Mach. Learn. 113(9): 6977-7010 (2024) - [j23]Arne De Brabandere, Christos Chatzichristos, Wim Van Paesschen, Maarten De Vos, Jesse Davis:
Detecting Epileptic Seizures Using Hand-Crafted and Automatically Constructed EEG Features. IEEE Trans. Biomed. Eng. 71(1): 318-325 (2024) - [j22]Wim Govers, Aras Yurtman, Turgay Aslandere, Nicole Eikelenberg, Wannes Meert, Jesse Davis:
Time-Shifted Transformers for Driver Identification Using Vehicle Data. IEEE Trans. Intell. Transp. Syst. 25(5): 3767-3776 (2024) - [c110]Laurens Devos, Lorenzo Cascioli, Jesse Davis:
Robustness Verification of Multi-Class Tree Ensembles. AAAI 2024: 21019-21028 - [c109]Wei Sun, Mingxiao Li, Jingyuan Sun, Jesse Davis, Marie-Francine Moens:
DMON: A Simple Yet Effective Approach for Argument Structure Learning. LREC/COLING 2024: 5109-5118 - [c108]Chaahat Jain, Lorenzo Cascioli, Laurens Devos, Marcel Vinzent, Marcel Steinmetz, Jesse Davis, Jörg Hoffmann:
Safety Verification of Tree-Ensemble Policies via Predicate Abstraction. ECAI 2024: 1189-1197 - [c107]Luca Stradiotti, Lorenzo Perini, Jesse Davis:
Combining Active Learning and Learning to Reject for Anomaly Detection. ECAI 2024: 2266-2273 - [c106]Luca Stradiotti, Lorenzo Perini, Jesse Davis:
Semi-Supervised Isolation Forest for Anomaly Detection. SDM 2024: 670-678 - [e18]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part I. Lecture Notes in Computer Science 14941, Springer 2024, ISBN 978-3-031-70340-9 [contents] - [e17]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part II. Lecture Notes in Computer Science 14942, Springer 2024, ISBN 978-3-031-70343-0 [contents] - [e16]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part III. Lecture Notes in Computer Science 14943, Springer 2024, ISBN 978-3-031-70351-5 [contents] - [e15]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part IV. Lecture Notes in Computer Science 14944, Springer 2024, ISBN 978-3-031-70358-4 [contents] - [e14]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part V. Lecture Notes in Computer Science 14945, Springer 2024, ISBN 978-3-031-70361-4 [contents] - [e13]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VI. Lecture Notes in Computer Science 14946, Springer 2024, ISBN 978-3-031-70364-5 [contents] - [e12]Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VII. Lecture Notes in Computer Science 14947, Springer 2024, ISBN 978-3-031-70367-6 [contents] - [e11]Albert Bifet, Povilas Daniusis, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Kai Puolamäki, Indre Zliobaite:
Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track - European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part VIII. Lecture Notes in Computer Science 14948, Springer 2024, ISBN 978-3-031-70370-6 [contents] - [i35]Jesse Davis, Pieter Robberechts:
Biases in Expected Goals Models Confound Finishing Ability. CoRR abs/2401.09940 (2024) - [i34]Andrea Pugnana, Lorenzo Perini, Jesse Davis, Salvatore Ruggieri:
Deep Neural Network Benchmarks for Selective Classification. CoRR abs/2401.12708 (2024) - [i33]Lorenzo Cascioli, Laurens Devos, Ondrej Kuzelka, Jesse Davis:
Faster Repeated Evasion Attacks in Tree Ensembles. CoRR abs/2402.08586 (2024) - [i32]Wei Sun, Mingxiao Li, Jingyuan Sun, Jesse Davis, Marie-Francine Moens:
DMON: A Simple yet Effective Approach for Argument Structure Learning. CoRR abs/2405.01216 (2024) - [i31]Ulf Brefeld, Jesse Davis, Laura de Jong, Stephanie Kovalchik:
Computational Approaches to Strategy and Tactics in Sports (Dagstuhl Seminar 24081). Dagstuhl Reports 14(2): 164-181 (2024) - 2023
- [j21]Pietro Totis, Jesse Davis, Luc De Raedt, Angelika Kimmig:
Lifted Reasoning for Combinatorial Counting. J. Artif. Intell. Res. 76: 1-58 (2023) - [j20]Maaike Van Roy, Pieter Robberechts, Wen-Chi Yang, Luc De Raedt, Jesse Davis:
A Markov Framework for Learning and Reasoning About Strategies in Professional Soccer. J. Artif. Intell. Res. 77: 517-562 (2023) - [c105]Lorenzo Perini, Vincent Vercruyssen, Jesse Davis:
Learning from Positive and Unlabeled Multi-Instance Bags in Anomaly Detection. KDD 2023: 1897-1906 - [c104]Pieter Robberechts, Maaike Van Roy, Jesse Davis:
un-xPass: Measuring Soccer Player's Creativity. KDD 2023: 4768-4777 - [c103]Lorenzo Perini, Jesse Davis:
Unsupervised Anomaly Detection with Rejection. NeurIPS 2023 - [c102]Laurens Devos, Lorenzo Perini, Wannes Meert, Jesse Davis:
Detecting Evasion Attacks in Deployed Tree Ensembles. ECML/PKDD (5) 2023: 120-136 - [c101]Timo Martens, Lorenzo Perini, Jesse Davis:
Semi-supervised Learning from Active Noisy Soft Labels for Anomaly Detection. ECML/PKDD (1) 2023: 219-236 - [c100]Dries Van der Pias, Wannes Meert, Johan Verbraecken, Jesse Davis:
A novel reject option applied to sleep stage scoring. SDM 2023: 820-828 - [e10]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected Papers. Communications in Computer and Information Science 1783, Springer 2023, ISBN 978-3-031-27526-5 [contents] - [i30]Lorenzo Perini, Daniele Giannuzzi, Jesse Davis:
How to Allocate your Label Budget? Choosing between Active Learning and Learning to Reject in Anomaly Detection. CoRR abs/2301.02909 (2023) - [i29]Lorenzo Perini, Jesse Davis:
Unsupervised Anomaly Detection with Rejection. CoRR abs/2305.13189 (2023) - [i28]Wei Sun, Mingxiao Li, Damien Sileo, Jesse Davis, Marie-Francine Moens:
Generating Explanations in Medical Question-Answering by Expectation Maximization Inference over Evidence. CoRR abs/2310.01299 (2023) - 2022
- [j19]Sieglinde Bogaert, Jesse Davis, Sam Van Rossom, Benedicte Vanwanseele:
Impact of Gender and Feature Set on Machine-Learning-Based Prediction of Lower-Limb Overuse Injuries Using a Single Trunk-Mounted Accelerometer. Sensors 22(8): 2860 (2022) - [j18]Jill Emmerzaal, Arne De Brabandere, Rob van der Straaten, Johan Bellemans, Liesbet De Baets, Jesse Davis, Ilse Jonkers, Annick Timmermans, Benedicte Vanwanseele:
Can the Output of a Learned Classification Model Monitor a Person's Functional Recovery Status Post-Total Knee Arthroplasty? Sensors 22(10): 3698 (2022) - [c99]Lorenzo Perini, Vincent Vercruyssen, Jesse Davis:
Transferring the Contamination Factor between Anomaly Detection Domains by Shape Similarity. AAAI 2022: 4128-4136 - [c98]Jonas Schouterden, Jessa Bekker, Jesse Davis, Hendrik Blockeel:
Unifying Knowledge Base Completion with PU Learning to Mitigate the Observation Bias. AAAI 2022: 4137-4145 - [c97]Arne De Brabandere, Zhenxiang Cao, Maarten De Vos, Alexander Bertrand, Jesse Davis:
Semi-supervised Change Point Detection Using Active Learning. DS 2022: 74-88 - [c96]Pieter Robberechts, Wannes Meert, Jesse Davis:
Elastic Product Quantization for Time Series. DS 2022: 157-172 - [c95]Jesse Davis, Lotte Bransen, Laurens Devos, Wannes Meert, Pieter Robberechts, Jan Van Haaren, Maaike Van Roy:
Evaluating Sports Analytics Models: Challenges, Approaches, and Lessons Learned. EBeM@IJCAI 2022 - [c94]Ioannis Antoniadis, Vincent Vercruyssen, Jesse Davis:
Systematic Evaluation of CASH Search Strategies for Unsupervised Anomaly Detection. LIDTA 2022: 8-22 - [c93]Thomas Dierckx, Jesse Davis, Wim Schoutens:
Towards Data-Driven Volatility Modeling with Variational Autoencoders. PKDD/ECML Workshops (2) 2022: 97-111 - [c92]Loren Nuyts, Laurens Devos, Wannes Meert, Jesse Davis:
Bitpaths: Compressing Datasets Without Decreasing Predictive Performance. PKDD/ECML Workshops (1) 2022: 261-268 - [c91]Jeroen Clijmans, Maaike Van Roy, Jesse Davis:
Looking Beyond the Past: Analyzing the Intrinsic Playing Style of Soccer Teams. ECML/PKDD (6) 2022: 370-385 - [c90]Vincent Vercruyssen, Lorenzo Perini, Wannes Meert, Jesse Davis:
Multi-domain Active Learning for Semi-supervised Anomaly Detection. ECML/PKDD (4) 2022: 485-501 - [e9]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 8th International Workshop, MLSA 2021, Virtual Event, September 13, 2021, Revised Selected Papers. Communications in Computer and Information Science 1571, Springer 2022, ISBN 978-3-031-02043-8 [contents] - [i27]Pieter Robberechts, Wannes Meert, Jesse Davis:
Elastic Product Quantization for Time Series. CoRR abs/2201.01856 (2022) - [i26]Laurens Devos, Wannes Meert, Jesse Davis:
Adversarial Example Detection in Deployed Tree Ensembles. CoRR abs/2206.13083 (2022) - 2021
- [j17]Dries Van der Plas, Johan Verbraecken, Marc Willemen, Wannes Meert, Jesse Davis:
Evaluation of Automated Hypnogram Analysis on Multi-Scored Polysomnographies. Frontiers Digit. Health 3: 707589 (2021) - [j16]Marc Mertens, Glen Debard, Jesse Davis, Els Devriendt, Koen Milisen, Jos Tournoy, Tom Croonenborghs, Bart Vanrumste:
Motion Sensor-Based Detection of Outlier Days Supporting Continuous Health Assessment for Single Older Adults. Sensors 21(18): 6080 (2021) - [c89]Kilian Hendrickx, Wannes Meert, Bram Cornelis, Jesse Davis:
Know Your Limits: Machine Learning with Rejection for Vehicle Engineering. ADMA 2021: 273-288 - [c88]Simon Suster, Pieter Fivez, Pietro Totis, Angelika Kimmig, Jesse Davis, Luc De Raedt, Walter Daelemans:
Mapping probability word problems to executable representations. EMNLP (1) 2021: 3627-3640 - [c87]Laurens Devos, Wannes Meert, Jesse Davis:
Versatile Verification of Tree Ensembles. ICML 2021: 2654-2664 - [c86]Pieter Robberechts, Jan Van Haaren, Jesse Davis:
A Bayesian Approach to In-Game Win Probability in Soccer. KDD 2021: 3512-3521 - [c85]Laurens Devos, Wannes Meert, Jesse Davis:
Verifying Tree Ensembles by Reasoning about Potential Instances. SDM 2021: 450-458 - [i25]Maaike Van Roy, Pieter Robberechts, Wen-Chi Yang, Luc De Raedt, Jesse Davis:
Leaving Goals on the Pitch: Evaluating Decision Making in Soccer. CoRR abs/2104.03252 (2021) - [i24]Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, Jesse Davis:
Machine Learning with a Reject Option: A survey. CoRR abs/2107.11277 (2021) - [i23]Ulf Brefeld, Jesse Davis, Martin Lames, James J. Little:
Machine Learning in Sports (Dagstuhl Seminar 21411). Dagstuhl Reports 11(9): 45-63 (2021) - 2020
- [j15]Jessa Bekker, Jesse Davis:
Learning from positive and unlabeled data: a survey. Mach. Learn. 109(4): 719-760 (2020) - [j14]Jill Emmerzaal, Arne De Brabandere, Yves Vanrompay, Julie Vranken, Valerie Storms, Liesbet De Baets, Kristoff Corten, Jesse Davis, Ilse Jonkers, Benedicte Vanwanseele, Annick Timmermans:
Towards the Monitoring of Functional Status in a Free-Living Environment for People with Hip or Knee Osteoarthritis: Design and Evaluation of the JOLO Blended Care App. Sensors 20(23): 6967 (2020) - [c84]Vincent Vercruyssen, Wannes Meert, Jesse Davis:
Transfer Learning for Anomaly Detection through Localized and Unsupervised Instance Selection. AAAI 2020: 6054-6061 - [c83]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
Multi-directional Rule Set Learning. DS 2020: 517-532 - [c82]Martin Svatos, Steven Schockaert, Jesse Davis, Ondrej Kuzelka:
STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment. ECAI 2020: 1515-1522 - [c81]Lorenzo Perini, Vincent Vercruyssen, Jesse Davis:
Class Prior Estimation in Active Positive and Unlabeled Learning. IJCAI 2020: 2915-2921 - [c80]Tom Decroos, Lotte Bransen, Jan Van Haaren, Jesse Davis:
VAEP: An Objective Approach to Valuing On-the-Ball Actions in Soccer (Extended Abstract). IJCAI 2020: 4696-4700 - [c79]Pieter Robberechts, Jesse Davis:
How Data Availability Affects the Ability to Learn Good xG Models. MLSA@PKDD/ECML 2020: 17-27 - [c78]Lorenzo Perini, Vincent Vercruyssen, Jesse Davis:
Quantifying the Confidence of Anomaly Detectors in Their Example-Wise Predictions. ECML/PKDD (3) 2020: 227-243 - [c77]Tom Decroos, Maaike Van Roy, Jesse Davis:
SoccerMix: Representing Soccer Actions with Mixture Models. ECML/PKDD (5) 2020: 459-474 - [c76]Vincent Vercruyssen, Wannes Meert, Jesse Davis:
"Now you see it, now you don't!" Detecting Suspicious Pattern Absences in Continuous Time Series. SDM 2020: 127-135 - [e8]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 7th International Workshop, MLSA 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings. Communications in Computer and Information Science 1324, Springer 2020, ISBN 978-3-030-64911-1 [contents] - [e7]Jesse Davis, Karim Tabia:
Scalable Uncertainty Management - 14th International Conference, SUM 2020, Bozen-Bolzano, Italy, September 23-25, 2020, Proceedings. Lecture Notes in Computer Science 12322, Springer 2020, ISBN 978-3-030-58448-1 [contents] - [d1]Wannes Meert, Kilian Hendrickx, Toon van Craenendonck, Pieter Robberechts, Hendrik Blockeel, Jesse Davis:
DTAIDistance. Zenodo, 2020 - [i22]Laurens Devos, Wannes Meert, Jesse Davis:
Additive Tree Ensembles: Reasoning About Potential Instances. CoRR abs/2001.11905 (2020) - [i21]Natasa Sarafijanovic-Djukic, Jesse Davis:
Fast Distance-based Anomaly Detection in Images Using an Inception-like Autoencoder. CoRR abs/2003.08731 (2020) - [i20]Laurens Devos, Wannes Meert, Jesse Davis:
Versatile Verification of Tree Ensembles. CoRR abs/2010.13880 (2020)
2010 – 2019
- 2019
- [j13]Daniel Berrar, Philippe Lopes, Jesse Davis, Werner Dubitzky:
Guest editorial: special issue on machine learning for soccer. Mach. Learn. 108(1): 1-7 (2019) - [j12]Werner Dubitzky, Philippe Lopes, Jesse Davis, Daniel Berrar:
The Open International Soccer Database for machine learning. Mach. Learn. 108(1): 9-28 (2019) - [c75]Natasa Sarafijanovic-Djukic, Jesse Davis:
Fast Distance-Based Anomaly Detection in Images Using an Inception-Like Autoencoder. DS 2019: 493-508 - [c74]Marc Mertens, Julie Raepsaet, Glen Debard, Mieke Mondelaers, Bart Vanrumste, Jesse Davis:
Use of wearable technology to quantify fall risk in psychogeriatric environments: a feasability study. EMBC 2019: 3187-3190 - [c73]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
LazyBum: Decision Tree Learning Using Lazy Propositionalization. ILP 2019: 98-113 - [c72]Tom Decroos, Lotte Bransen, Jan Van Haaren, Jesse Davis:
Actions Speak Louder than Goals: Valuing Player Actions in Soccer. KDD 2019: 1851-1861 - [c71]Jessa Bekker, Pieter Robberechts, Jesse Davis:
Beyond the Selected Completely at Random Assumption for Learning from Positive and Unlabeled Data. ECML/PKDD (2) 2019: 71-85 - [c70]Kenneth Verstraete, Tom Decroos, Bruno Coussement, Nick Vannieuwenhoven, Jesse Davis:
Analyzing Soccer Players' Skill Ratings Over Time Using Tensor-Based Methods. PKDD/ECML Workshops (2) 2019: 225-234 - [c69]Tom Decroos, Jesse Davis:
Player Vectors: Characterizing Soccer Players' Playing Style from Match Event Streams. ECML/PKDD (3) 2019: 569-584 - [c68]Laurens Devos, Wannes Meert, Jesse Davis:
Fast Gradient Boosting Decision Trees with Bit-Level Data Structures. ECML/PKDD (1) 2019: 590-606 - [c67]Ondrej Kuzelka, Jesse Davis:
Markov Logic Networks for Knowledge Base Completion: A Theoretical Analysis Under the MCAR Assumption. UAI 2019: 1138-1148 - [e6]Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann:
Machine Learning and Data Mining for Sports Analytics - 5th International Workshop, MLSA 2018, Co-located with ECML/PKDD 2018, Dublin, Ireland, September 10, 2018, Proceedings. Lecture Notes in Computer Science 11330, Springer 2019, ISBN 978-3-030-17273-2 [contents] - [i19]Pieter Robberechts, Jan Van Haaren, Jesse Davis:
Who Will Win It? An In-game Win Probability Model for Football. CoRR abs/1906.05029 (2019) - [i18]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
LazyBum: Decision tree learning using lazy propositionalization. CoRR abs/1909.05044 (2019) - [i17]Pieter Robberechts, Rud Derie, Pieter Van den Berghe, Joeri Gerlo, Dirk De Clercq, Veerle Segers, Jesse Davis:
Gait Event Detection in Tibial Acceleration Profiles: a Structured Learning Approach. CoRR abs/1910.13372 (2019) - [i16]Kilian Hendrickx, Wannes Meert, Yves Mollet, Johan Gyselinck, Bram Cornelis, Konstantinos C. Gryllias, Jesse Davis:
A general anomaly detection framework for fleet-based condition monitoring of machines. CoRR abs/1912.12941 (2019) - 2018
- [j11]Irma Ravkic, Martin Znidarsic, Jan Ramon, Jesse Davis:
Graph sampling with applications to estimating the number of pattern embeddings and the parameters of a statistical relational model. Data Min. Knowl. Discov. 32(4): 913-948 (2018) - [j10]Derek Greene, Björn Bringmann, Élisa Fromont, Jesse Davis:
Introduction to the special issue for the ECML PKDD 2018 journal track. Data Min. Knowl. Discov. 32(5): 1177-1178 (2018) - [j9]Jesse Davis, Björn Bringmann, Élisa Fromont, Derek Greene:
Guest editors introduction to the special issue for the ECML PKDD 2018 journal track. Mach. Learn. 107(8-10): 1207-1208 (2018) - [c66]Jessa Bekker, Jesse Davis:
Estimating the Class Prior in Positive and Unlabeled Data Through Decision Tree Induction. AAAI 2018: 2712-2719 - [c65]Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert:
Relational Marginal Problems: Theory and Estimation. AAAI 2018: 6384-6391 - [c64]Vincent Vercruyssen, Wannes Meert, Gust Verbruggen, Koen Maes, Ruben Baumer, Jesse Davis:
Semi-Supervised Anomaly Detection with an Application to Water Analytics. ICDM 2018: 527-536 - [c63]Tom Decroos, Jan Van Haaren, Jesse Davis:
Automatic Discovery of Tactics in Spatio-Temporal Soccer Match Data. KDD 2018: 223-232 - [c62]Tim Op De Beéck, Wannes Meert, Kurt Schütte, Benedicte Vanwanseele, Jesse Davis:
Fatigue Prediction in Outdoor Runners Via Machine Learning and Sensor Fusion. KDD 2018: 606-615 - [c61]Jessa Bekker, Jesse Davis:
Learning from Positive and Unlabeled Data under the Selected At Random Assumption. LIDTA@ECML/PKDD 2018: 8-22 - [c60]Pieter Robberechts, Jesse Davis:
Forecasting the FIFA World Cup - Combining Result- and Goal-Based Team Ability Parameters. MLSA@PKDD/ECML 2018: 16-30 - [c59]Pieter Robberechts, Maarten Bosteels, Jesse Davis, Wannes Meert:
Query Log Analysis: Detecting Anomalies in DNS Traffic at a TLD Resolver. DMLE/IOTSTREAMING@PKDD/ECML 2018: 55-67 - [c58]Tom Decroos, Kurt Schütte, Tim Op De Beéck, Benedicte Vanwanseele, Jesse Davis:
AMIE: Automatic Monitoring of Indoor Exercises. ECML/PKDD (3) 2018: 424-439 - [c57]Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert:
PAC-Reasoning in Relational Domains. UAI 2018: 927-936 - [c56]Kaja Zupanc, Jesse Davis:
Estimating Rule Quality for Knowledge Base Completion with the Relationship between Coverage Assumption. WWW 2018: 1073-1081 - [i15]Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert:
PAC-Reasoning in Relational Domains. CoRR abs/1803.05768 (2018) - [i14]Jessa Bekker, Jesse Davis:
Learning from Positive and Unlabeled Data under the Selected At Random Assumption. CoRR abs/1808.08755 (2018) - [i13]Jessa Bekker, Jesse Davis:
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data. CoRR abs/1809.03207 (2018) - [i12]Jessa Bekker, Jesse Davis:
Learning From Positive and Unlabeled Data: A Survey. CoRR abs/1811.04820 (2018) - 2017
- [c55]Tom Decroos, Vladimir Dzyuba, Jan Van Haaren, Jesse Davis:
Predicting Soccer Highlights from Spatio-Temporal Match Event Streams. AAAI 2017: 1302-1308 - [c54]