


default search action
1. SVM 2002: Niagara Falls, Canada
- Seong-Whan Lee, Alessandro Verri:

Pattern Recognition with Support Vector Machines, First International Workshop, SVM 2002, Niagara Falls, Canada, August 10, 2002, Proceedings. Lecture Notes in Computer Science 2388, Springer 2002, ISBN 3-540-44016-X
Invited Papers
- Neelanjan Mukherjee, Sayan Mukherjee:

Predicting Signal Peptides with Support Vector Machines. 1-7 - Ronan Collobert, Yoshua Bengio, Samy Bengio:

Scaling Large Learning Problems with Hard Parallel Mixtures. 8-23
Computational Issues
- David M. J. Tax, Piotr Juszczak:

Kernel Whitening for One-Class Classification. 40-52 - Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:

A Fast SVM Training Algorithm. 53-67 - Giorgio Fumera

, Fabio Roli
:
Support Vector Machines with Embedded Reject Option. 68-82
Object Recognition
- Annalisa Barla

, Emanuele Franceschi, Francesca Odone, Alessandro Verri:
Image Kernels. 83-96 - Barbara Caputo, Gyuri Dorkó, Heinrich Niemann:

Combining Color and Shape Information for Appearance-Based Object Recognition Using Ultrametric Spin Glass-Markov Random Fields. 97-111 - Chikahito Nakajima, Massimiliano Pontil:

Maintenance Training of Electric Power Facilities Using Object Recognition by SVM. 112-119 - Roman Genov, Gert Cauwenberghs

:
Kerneltron: Support Vector 'Machine' in Silicon. 120-134
Pattern Recognition
- Stanley M. Bileschi, Bernd Heisele:

Advances in Component-Based Face Detection. 135-143 - L. Walawalkar, Mohammed Yeasin, Anand M. Narasimhamurthy, Rajeev Sharma:

Support Vector Learning for Gender Classification Using Audio and Visual Cues: A Comparison. 144-159 - Ming-Wei Chang, Chih-Jen Lin

, Ruby C. Weng:
Analysis of Nonstationary Time Series Using Support Vector Machines. 160-170 - Chellu Chandra Sekhar, Kazuya Takeda, Fumitada Itakura:

Recognition of Consonant-Vowel (CV) Units of Speech in a Broadcast News Corpus Using Support Vector Machines. 171-185
Applications
- Mike Fugate, James R. Gattiker:

Anomaly Detection Enhanced Classification in Computer Intrusion Detection. 186-197 - Mariofanna G. Milanova

, Tomasz G. Smolinski, Grzegorz M. Boratyn, Jacek M. Zurada, Andrzej Wróbel:
Sparse Correlation Kernel Analysis and Evolutionary Algorithm-Based Modeling of the Sensory Activity within the Rat's Barrel Cortex. 198-212 - Hyeran Byun, Seong-Whan Lee:

Applications of Support Vector Machines for Pattern Recognition: A Survey. 213-236 - Asanobu Kitamoto

:
Typhoon Analysis and Data Mining with Kernel Methods. 237-248
Poster Papers
- Fabrizio Smeraldi, Josef Bigün

, Wulfram Gerstner
:
Support Vector Features and the Role of Dimensionality in Face Authentication. 249-259 - Yong Ma, Xiaoqing Ding:

Face Detection Based on Cost-Sensitive Support Vector Machines. 260-267 - Seonghoon Kang, Hyeran Byun, Seong-Whan Lee:

Real-Time Pedestrian Detection Using Support Vector Machines. 268-277 - Shantanu Chakrabartty, Gert Cauwenberghs

:
Forward Decoding Kernel Machines: A Hybrid HMM/SVM Approach to Sequence Recognition. 278-292 - Kwang In Kim, Keechul Jung, Jin Hyung Kim:

Color Texture-Based Object Detection: An Application to License Plate Localization. 293-309 - Stefan Rüping:

Support Vector Machines in Relational Databases. 310-320 - Zeyu Li, Shiwei Tang, Shuicheng Yan:

Multi-Class SVM Classifier Based on Pairwise Coupling. 321-333 - Jennifer Huang, Volker Blanz, Bernd Heisele:

Face Recognition Using Component-Based SVM Classification and Morphable Models. 334-341 - Jianmin Li, Bo Zhang, Fuzong Lin:

A New Cache Replacement Algorithm in SMO. 342-353 - Nedjem-Eddine Ayat, Mohamed Cheriet, Ching Y. Suen:

Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme. 354-369 - Dihua Xi, Seong-Whan Lee:

Face Detection Based on Support Vector Machines. 370-387 - Björn Johansson, Fredrik Kahl:

Detecting Windows in City Scenes. 388-396 - Hyun-Chul Kim, Shaoning Pang

, Hong-Mo Je, Daijin Kim, Sung Yang Bang:
Support Vector Machine Ensemble with Bagging. 397-407 - Eulanda Miranda dos Santos, Herman Martins Gomes:

A Comparative Study of Polynomial Kernel SVM Applied to Appearance-Based Object Recognition. 408-418

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














