


default search action
26th UAI 2010: Catalina Island, CA, USA
- Peter Grünwald, Peter Spirtes:

UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, July 8-11, 2010. AUAI Press 2010, ISBN 978-0-9749039-6-5 - Ryan Prescott Adams, George E. Dahl, Iain Murray:

Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes. 1-9 - Amrudin Agovic, Arindam Banerjee:

Gaussian Process Topic Models. 10-19 - Amr Ahmed, Eric P. Xing:

Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream. 20-29 - Nimar S. Arora, Rodrigo de Salvo Braz, Erik B. Sudderth, Stuart Russell:

Gibbs Sampling in Open-Universe Stochastic Languages. 30-39 - Raouia Ayachi, Nahla Ben Amor, Salem Benferhat, Rolf Haenni:

Compiling Possibilistic Networks: Alternative Approaches to Possibilistic Inference. 40-47 - Kim Bauters, Steven Schockaert, Martine De Cock, Dirk Vermeir:

Possibilistic Answer Set Programming Revisited. 48-55 - Debarun Bhattacharjya, Ross D. Shachter:

Three new sensitivity analysis methods for influence diagrams. 56-64 - Charles Blundell, Yee Whye Teh, Katherine A. Heller:

Bayesian Rose Trees. 65-72 - Matthias Bröcheler, Lilyana Mihalkova, Lise Getoor:

Probabilistic Similarity Logic. 73-82 - Emma Brunskill, Stuart Russell:

RAPID: A Reachable Anytime Planner for Imprecisely-sensed Domains. 83-92 - Alan Carlin, Nathan Schurr, Janusz Marecki:

ALARMS: Alerting and Reasoning Management System for Next Generation Aircraft Hazards. 93-100 - Kamalika Chaudhuri, Yoav Freund, Daniel J. Hsu:

An Online Learning-based Framework for Tracking. 101-108 - Yutian Chen, Max Welling, Alexander J. Smola:

Super-Samples from Kernel Herding. 109-116 - Alexey V. Chernov, Vladimir Vovk:

Prediction with Advice of Unknown Number of Experts. 117-125 - Jaesik Choi, Eyal Amir, David J. Hill:

Lifted Inference for Relational Continuous Models. 126-134 - Gabriel Corona, François Charpillet:

Distribution over Beliefs for Memory Bounded Dec-POMDP Planning. 135-142 - Povilas Daniusis, Dominik Janzing, Joris M. Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schölkopf:

Inferring deterministic causal relations. 143-150 - Gal Elidan:

Inference-less Density Estimation using Copula Bayesian Networks. 151-159 - Tom Erez, William D. Smart:

A Scalable Method for Solving High-Dimensional Continuous POMDPs Using Local Approximation. 160-167 - Stefano Ermon, Jon Conrad, Carla P. Gomes, Bart Selman:

Playing games against nature: optimal policies for renewable resource allocation. 168-176 - Robin J. Evans, Thomas S. Richardson:

Maximum likelihood fitting of acyclic directed mixed graphs to binary data. 177-184 - Xi Alice Gao, Avi Pfeffer:

Learning Game Representations from Data Using Rationality Constraints. 185-192 - Luis Garcia, Sarah Spielvogel, Seth Sullivant:

Identifying Causal Effects with Computer Algebra. 193-200 - Robert Glaubius, Terry Tidwell, Christopher D. Gill, William D. Smart:

Real-Time Scheduling via Reinforcement Learning. 201-209 - Vibhav Gogate, Pedro M. Domingos:

Formula-Based Probabilistic Inference. 210-219 - Mithun Das Gupta, Thomas S. Huang:

Regularized Maximum Likelihood for Intrinsic Dimension Estimation. 220-227 - Joseph Y. Halpern, Nan Rong, Ashutosh Saxena:

MDPs with Unawareness. 228-235 - Firas Hamze, Nando de Freitas:

Intracluster Moves for Constrained Discrete-Space MCMC. 236-243 - Kaizhu Huang, Rong Jin, Zenglin Xu, Cheng-Lin Liu:

Robust Metric Learning by Smooth Optimization. 244-251 - Matthew J. Johnson, Alan S. Willsky:

The Hierarchical Dirichlet Process Hidden Semi-Markov Model. 252-259 - Berk Kapicioglu, Robert E. Schapire, Martin Wikelski, Tamara Broderick:

Combining Spatial and Telemetric Features for Learning Animal Movement Models. 260-267 - Kalev Kask, Rina Dechter, Andrew Gelfand:

BEEM : Bucket Elimination with External Memory. 268-276 - Kevin T. Kelly, Conor Mayo-Wilson:

Causal Conclusions that Flip Repeatedly and Their Justification. 277-285 - Arto Klami, Seppo Virtanen, Samuel Kaski:

Bayesian exponential family projections for coupled data sources. 286-293 - Akshat Kumar, Shlomo Zilberstein:

Anytime Planning for Decentralized POMDPs using Expectation Maximization. 294-301 - Ping Li:

Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. 302-311 - Ping Li, Michael W. Mahoney, Yiyuan She:

Approximating Higher-Order Distances Using Random Projections. 312-321 - Yijing Li, Prakash P. Shenoy:

Solving Hybrid Influence Diagrams with Deterministic Variables. 322-331 - Qiang Liu, Alexander Ihler:

Negative Tree Reweighted Belief Propagation. 332-339 - Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, Joseph M. Hellerstein:

GraphLab: A New Framework For Parallel Machine Learning. 340-349 - Qi Mao, Ivor W. Tsang:

Parameter-Free Spectral Kernel Learning. 350-357 - Marina Meila, Harr Chen:

Dirichlet Process Mixtures of Generalized Mallows Models. 358-367 - Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, Toshiyuki Tanaka:

Parametric Return Density Estimation for Reinforcement Learning. 368-375 - Enrique Munoz de Cote, Archie C. Chapman, Adam M. Sykulski, Nicholas R. Jennings:

Automated Planning in Repeated Adversarial Games. 376-383 - Mathias Niepert:

A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in Markov Logic Networks. 384-391 - Farheen Omar, Mathieu Sinn, Jakub Truszkowski, Pascal Poupart, James Yungjen Tung, Allen Caine:

Comparative Analysis of Probabilistic Models for Activity Recognition with an Instrumented Walker. 392-400 - Sebastian Ordyniak, Stefan Szeider:

Algorithms and Complexity Results for Exact Bayesian Structure Learning. 401-408 - Thorsten J. Ottosen, Finn Verner Jensen:

The Cost of Troubleshooting Cost Clusters with Inside Information. 409-416 - Judea Pearl:

On a Class of Bias-Amplifying Variables that Endanger Effect Estimates. 417-424 - Judea Pearl:

On Measurement Bias in Causal Inference. 425-432 - Judea Pearl, Azaria Paz:

Confounding Equivalence in Causal Inference. 433-441 - Miika Pihlaja, Michael Gutmann, Aapo Hyvärinen:

A Family of Computationally E cient and Simple Estimators for Unnormalized Statistical Models. 442-449 - Yuan (Alan) Qi, Ahmed H. Abdel-Gawad, Thomas P. Minka:

Sparse-posterior Gaussian Processes for general likelihoods. 450-457 - Guilin Qi, Jianfeng Du, Weiru Liu, David A. Bell:

Merging Knowledge Bases in Possibilistic Logic by Lexicographic Aggregation. 458-465 - Erik Quaeghebeur:

Characterizing the Set of Coherent Lower Previsions with a Finite Number of Constraints or Vertices. 466-473 - Raghuram Ramanujan, Ashish Sabharwal, Bart Selman:

Understanding Sampling Style Adversarial Search Methods. 474-483 - Michael Ramati, Yuval Shahar:

Irregular-Time Bayesian Networks. 484-491 - Sebastian Riedel, David A. Smith, Andrew McCallum:

Inference by Minimizing Size, Divergence, or their Sum. 492-499 - Nicholas Ruozzi, Sekhar Tatikonda:

Convergent and Correct Message Passing Schemes for Optimization Problems over Graphical Models. 500 - Chris Russell, Lubor Ladicky, Pushmeet Kohli, Philip H. S. Torr:

Exact and Approximate Inference in Associative Hierarchical Networks using Graph Cuts. 501-508 - Ross D. Shachter, Debarun Bhattacharjya:

Dynamic programming in in uence diagrams with decision circuits. 509-516 - Daniel Sheldon, Bistra Dilkina, Adam N. Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon Conrad, Carla P. Gomes, David B. Shmoys, William Allen, Ole Amundsen, William Vaughan:

Maximizing the Spread of Cascades Using Network Design. 517-526 - Ilya Shpitser, Tyler J. VanderWeele, James M. Robins:

On the Validity of Covariate Adjustment for Estimating Causal Effects. 527-536 - Ricardo Bezerra de Andrade e Silva, Robert B. Gramacy:

Gaussian Process Structural Equation Models with Latent Variables. 537-545 - Aleksandr Simma, Michael I. Jordan:

Modeling Events with Cascades of Poisson Processes. 546-555 - Ajit Paul Singh, Geoffrey J. Gordon:

A Bayesian Matrix Factorization Model for Relational Data. 556-563 - Jonathan Sorg, Satinder Singh, Richard L. Lewis:

Variance-Based Rewards for Approximate Bayesian Reinforcement Learning. 564-571 - Ameet Talwalkar, Afshin Rostamizadeh:

Matrix Coherence and the Nystrom Method. 572-579 - Gerald Tesauro, V. T. Rajan, Richard B. Segal:

Bayesian Inference in Monte-Carlo Tree Search. 580-588 - Jin Tian, Ru He, Lavanya Ram:

Bayesian Model Averaging Using the k-best Bayesian Network Structures. 589-597 - Maomi Ueno:

Learning networks determined by the ratio of prior and data. 598-605 - Michal Valko, Branislav Kveton, Ling Huang, Daniel Ting:

Online Semi-Supervised Learning on Quantized Graphs. 606-614 - Bart van den Broek, Wim Wiegerinck, Hilbert J. Kappen:

Risk Sensitive Path Integral Control. 615-622 - Jarno Vanhatalo, Aki Vehtari:

Speeding up the binary Gaussian process classification. 623-631 - Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, Yu Xia:

Efficient Clustering with Limited Distance Information. 632-640 - Mark Voortman, Denver Dash, Marek J. Druzdzel:

Learning Why Things Change: The Difference-Based Causality Learner. 641-650 - Tomás Werner:

Primal View on Belief Propagation. 651-657 - Jens Witkowski:

Truthful Feedback for Sanctioning Reputation Mechanisms. 658-665 - Feng Wu, Shlomo Zilberstein, Xiaoping Chen:

Rollout Sampling Policy Iteration for Decentralized POMDPs. 666-673 - Yan Yan, Rómer Rosales, Glenn Fung, Jennifer G. Dy:

Modeling Multiple Annotator Expertise in the Semi-Supervised Learning Scenario. 674-682 - Shuang-Hong Yang, Jiang Bian, Hongyuan Zha:

Hybrid Generative/Discriminative Learning for Automatic Image Annotation. 683-690 - Changhe Yuan, XiaoJian Wu, Eric A. Hansen:

Solving Multistage Influence Diagrams using Branch-and-Bound Search. 691-700 - Bai Zhang, Yue Joseph Wang:

Learning Structural Changes of Gaussian Graphical Models in Controlled Experiments. 701-708 - Kun Zhang, Aapo Hyvärinen:

Source Separation and Higher-Order Causal Analysis of MEG and EEG. 709-716 - Kun Zhang, Bernhard Schölkopf, Dominik Janzing:

Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery. 717-724 - Yu Zhang, Bin Cao, Dit-Yan Yeung:

Multi-Domain Collaborative Filtering. 725-732 - Yu Zhang, Dit-Yan Yeung:

A Convex Formulation for Learning Task Relationships in Multi-Task Learning. 733-442 - Qian Zhu, Branislav Kveton, Lily B. Mummert, Padmanabhan Pillai:

Automatic Tuning of Interactive Perception Applications. 743-751

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














