default search action
Kun Zhang 0001
Person information
- affiliation: Carnegie Mellon University, Department of Philosophy, Pittsburgh, PA, USA
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany
- affiliation (PhD 2005): Chinese University of Hong Kong, Hong Kong
Other persons with the same name
- Kun Zhang — disambiguation page
- Kun Zhang 0002 — Taiyuan University of Technology, College of Mechanical Engineering, China
- Kun Zhang 0003 — East China Normal University, Key Laboratory of Geographic Information Science, Shanghai, China
- Kun Zhang 0004 — State University of New York at Stony Brook, Department of Physics and Astronomy, NY, USA
- Kun Zhang 0005 — Northeastern University, College of Information Science and Engineering, Shenyang, China
- Kun Zhang 0006 — Georgia Institute of Technology, Atlanta, GA, USA
- Kun Zhang 0007 — Beijing University of Technology, Key Laboratory of Advanced Manufacturing Technology, China
- Kun Zhang 0008 — Air Force Engineering University, Information and Navigation College, Xian, China
- Kun Zhang 0009 — Xidian University, National Laboratory of Radar Signal Processing, China
- Kun Zhang 0010 — Nantong University, School of Electrical Engineering, China
- Kun Zhang 0011 — Hainan University, State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou, China
- Kun Zhang 0012 — Xavier University of Louisiana, New Orleans, LA, USA
- Kun Zhang 0013 — Shandong University, Jinan, China (and 1 more)
- Kun Zhang 0014 — University of Colorado at Boulder, Boulder, CO, USA
- Kun Zhang 0015 — Hefei University of Technology, School of Computer Science and Information Engineering, Key Laboratory of Knowledge Engineering with Big Data, Hefei, China (and 1 more)
- Kun Zhang 0016 — University of Chinese Academy of Sciences, School of Cyber Security, Beijing, China
- Kun Zhang 0017 — Hong Kong University of Science and Technology, Hong Kong (and 1 more)
- Kun Zhang 0018 — Northwestern Polytechnical University, School of Astronautics, Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an, China
- Kun Zhang 0019 — Southeast University, School of Economics and Management, Nanjing, China
- Kun Zhang 0020 — University of California San Diego, Department of Bioengineering, La Jolla, CA, USA
- Kun Zhang 0021 — Nanjing University of Science and Technology, School of Computer Science and Engineering, China
- Kun Zhang 0022 — Shenyang University of Technology, School of Materials Science and Engineering, China
- Kun Zhang 0023 — Shaanxi Provincial Tumor Hospital, Xi'an, China
- Kun Zhang 0024 — Chinese Academy of Sciences, Institute of Tibetan Plateau Research, Beijing, China (and 1 more)
- Kun Zhang 0025 — University of Science and Technology of China, CAS Key Laboratory of Wireless-Optical Communications, Hefei, China
- Kun Zhang 0026 — Shandong University of Science and Technology, College of Mechanical and Electronic Engineering, Qingdao, China (and 2 more)
- Kun Zhang 0027 — Huaqiao University, College of Tourism, Quanzhou, China
- Kun Zhang 0028 — University of Science and Technology of China, Department of Automation, Hefei, China
- Kun Zhang 0029 — Northwestern Polytechnical University, School of Electronics and Information, Xi'an, China
- Kun Zhang 0030 — Beihang University, Fert Beijing Research Institute, Beijing, China (and 2 more)
- Kun Zhang 0031 — Central China Normal University, National Engineering Laboratory for Educational Big Data and the National Engineering Research Center for E-Learning, Wuhan, China
- Kun Zhang 0032 — Luoyang Polytechnic, School of Automotive and Rail Transportation, Luoyang, China
- Kun Zhang 0033 — South China University of Technology, School of Electronics and Information Engineering, Guangzhou, China
- Kun Zhang 0034 — Xi'an Peihua University, School of Communication, Xi'an, China
- Kun Zhang 0035 — Nanjing University of Science and Technology, School of Computer Science and Engineering, Nanjing, China
- Kun Zhang 0036 — Renmin University of China, Institute of Statistics and Big Data, Beijing, China (and 1 more)
- Kun Zhang 0037 — Zhejiang Lab, Hangzhou, China
- Kun Zhang 0038 — Shandong University of Science and Technology, College of Intelligent Equipment, Tai'an, China
- Kun Zhang 0039 — Liaoning University, School of Mathematics, Shenyang, China
- Kun Zhang 0040 — University of Science and Technology of China, School of Information Science and Technology, Hefei, China (and 1 more)
- Kun Zhang 0041 — Chinese Academy of Sciences, Data Intelligence System Research Center, Institute of Computing Technology, China (and 1 more)
- Kun Zhang 0042 — Chinese Academy of Sciences, Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Hefei, China (and 1 more)
- Kun Zhang 0043 — Google Inc., Google Health, Mountain View, CA, USA
- Kun Zhang 0044 — University of Electronic Science and Technology of China, School of Mechanical and Electrical Engineering, Chengdu, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j41]Yue Cong, Jing Qiu, Kun Zhang, Zhongyang Fang, Chengliang Gao, Shen Su, Zhihong Tian:
Ada-FFL: Adaptive computing fairness federated learning. CAAI Trans. Intell. Technol. 9(3): 573-584 (2024) - [j40]Weiwei Cai, Xuemiao Xu, Jiajia Xu, Huaidong Zhang, Haoxin Yang, Kun Zhang, Shengfeng He:
Hierarchical damage correlations for old photo restoration. Inf. Fusion 107: 102340 (2024) - [j39]Yujia Zheng, Biwei Huang, Wei Chen, Joseph D. Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter Spirtes, Kun Zhang:
Causal-learn: Causal Discovery in Python. J. Mach. Learn. Res. 25: 60:1-60:8 (2024) - [j38]Yuanyuan Wang, Wei Huang, Mingming Gong, Xi Geng, Tongliang Liu, Kun Zhang, Dacheng Tao:
Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations. J. Mach. Learn. Res. 25: 154:1-154:50 (2024) - [j37]Feng Xie, Biwei Huang, Zhengming Chen, Ruichu Cai, Clark Glymour, Zhi Geng, Kun Zhang:
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables. J. Mach. Learn. Res. 25: 191:1-191:61 (2024) - [j36]Zijian Li, Ruichu Cai, Tom Z. J. Fu, Zhifeng Hao, Kun Zhang:
Transferable Time-Series Forecasting Under Causal Conditional Shift. IEEE Trans. Pattern Anal. Mach. Intell. 46(4): 1932-1949 (2024) - [j35]Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, Kun Zhang:
Graph Domain Adaptation: A Generative View. ACM Trans. Knowl. Discov. Data 18(3): 60:1-60:24 (2024) - [j34]Hanqi Yan, Lin Gui, Menghan Wang, Kun Zhang, Yulan He:
Explainable Recommender With Geometric Information Bottleneck. IEEE Trans. Knowl. Data Eng. 36(7): 3036-3046 (2024) - [j33]Weiwei Cai, Huaidong Zhang, Xuemiao Xu, Chenshu Xu, Kun Zhang, Shengfeng He:
Delving Into Important Samples of Semi-Supervised Old Photo Restoration: A New Dataset and Method. IEEE Trans. Multim. 26: 9866-9879 (2024) - [j32]Kun Zhang, Ilya Shpitser, Sara Magliacane, Davide Bacciu, Fei Wu, Changshui Zhang, Peter Spirtes:
IEEE Transactions on Neural Networks and Learning Systems Special Issue on Causal Discovery and Causality-Inspired Machine Learning. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4899-4901 (2024) - [j31]Cheng Xu, Keke Li, Xuandi Luo, Xuemiao Xu, Shengfeng He, Kun Zhang:
Fully Deformable Network for Multiview Face Image Synthesis. IEEE Trans. Neural Networks Learn. Syst. 35(7): 8854-8868 (2024) - [c170]Sheng Zhang, Muzammal Naseer, Guangyi Chen, Zhiqiang Shen, Salman H. Khan, Kun Zhang, Fahad Shahbaz Khan:
S3A: Towards Realistic Zero-Shot Classification via Self Structural Semantic Alignment. AAAI 2024: 7278-7286 - [c169]Yuewen Sun, Erli Wang, Biwei Huang, Chaochao Lu, Lu Feng, Changyin Sun, Kun Zhang:
ACAMDA: Improving Data Efficiency in Reinforcement Learning through Guided Counterfactual Data Augmentation. AAAI 2024: 15193-15201 - [c168]Wei Chen, Zhiyi Huang, Ruichu Cai, Zhifeng Hao, Kun Zhang:
Identification of Causal Structure with Latent Variables Based on Higher Order Cumulants. AAAI 2024: 20353-20361 - [c167]Haoyue Dai, Ignavier Ng, Yujia Zheng, Zhengqing Gao, Kun Zhang:
Local Causal Discovery with Linear non-Gaussian Cyclic Models. AISTATS 2024: 154-162 - [c166]Ignavier Ng, Biwei Huang, Kun Zhang:
Structure Learning with Continuous Optimization: A Sober Look and Beyond. CLeaR 2024: 71-105 - [c165]Yuke Li, Lixiong Chen, Guangyi Chen, Ching-Yao Chan, Kun Zhang, Stefano Anzellotti, Donglai Wei:
Learning Socio-Temporal Graphs for Multi-Agent Trajectory Prediction. HCMA@MM 2024: 55-64 - [c164]Guangyi Chen, Yuke Li, Xiao Liu, Zijian Li, Eman Al Suradi, Donglai Wei, Kun Zhang:
LLCP: Learning Latent Causal Processes for Reasoning-based Video Question Answer. ICLR 2024 - [c163]Haoyue Dai, Ignavier Ng, Gongxu Luo, Peter Spirtes, Petar Stojanov, Kun Zhang:
Gene Regulatory Network Inference in the Presence of Dropouts: a Causal View. ICLR 2024 - [c162]Xinshuai Dong, Biwei Huang, Ignavier Ng, Xiangchen Song, Yujia Zheng, Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang:
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables. ICLR 2024 - [c161]Songyao Jin, Feng Xie, Guangyi Chen, Biwei Huang, Zhengming Chen, Xinshuai Dong, Kun Zhang:
Structural Estimation of Partially Observed Linear Non-Gaussian Acyclic Model: A Practical Approach with Identifiability. ICLR 2024 - [c160]Longkang Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, Kun Zhang:
Federated Causal Discovery from Heterogeneous Data. ICLR 2024 - [c159]Xiu-Chuan Li, Kun Zhang, Tongliang Liu:
Causal Structure Recovery with Latent Variables under Milder Distributional and Graphical Assumptions. ICLR 2024 - [c158]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Identifiable Latent Polynomial Causal Models through the Lens of Change. ICLR 2024 - [c157]Zeyu Tang, Jialu Wang, Yang Liu, Peter Spirtes, Kun Zhang:
Procedural Fairness Through Decoupling Objectionable Data Generating Components. ICLR 2024 - [c156]Kun Zhang, Shaoan Xie, Ignavier Ng, Yujia Zheng:
Causal Representation Learning from Multiple Distributions: A General Setting. ICML 2024 - [c155]Guangyi Chen, Yifan Shen, Zhenhao Chen, Xiangchen Song, Yuewen Sun, Weiran Yao, Xiao Liu, Kun Zhang:
CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process. ICML 2024 - [c154]Shunxing Fan, Mingming Gong, Kun Zhang:
On the Recoverability of Causal Relations from Temporally Aggregated I.I.D. Data. ICML 2024 - [c153]Ignavier Ng, Xinshuai Dong, Haoyue Dai, Biwei Huang, Peter Spirtes, Kun Zhang:
Score-Based Causal Discovery of Latent Variable Causal Models. ICML 2024 - [c152]Wenjie Wang, Biwei Huang, Feng Liu, Xinge You, Tongliang Liu, Kun Zhang, Mingming Gong:
Optimal Kernel Choice for Score Function-based Causal Discovery. ICML 2024 - [c151]Tianjun Yao, Yongqiang Chen, Zhenhao Chen, Kai Hu, Zhiqiang Shen, Kun Zhang:
Empowering Graph Invariance Learning with Deep Spurious Infomax. ICML 2024 - [c150]Yujia Zheng, Zeyu Tang, Yiwen Qiu, Bernhard Schölkopf, Kun Zhang:
Detecting and Identifying Selection Structure in Sequential Data. ICML 2024 - [c149]Donghuo Zeng, Roberto Sebastian Legaspi, Yuewen Sun, Xinshuai Dong, Kazushi Ikeda, Peter Spirtes, Kun Zhang:
Counterfactual Reasoning Using Predicted Latent Personality Dimensions for Optimizing Persuasion Outcome. PERSUASIVE 2024: 287-300 - [c148]Tianjun Yao, Jiaqi Sun, Defu Cao, Kun Zhang, Guangyi Chen:
MuGSI: Distilling GNNs with Multi-Granularity Structural Information for Graph Classification. WWW 2024: 709-720 - [i165]Xinshuai Dong, Haoyue Dai, Yewen Fan, Songyao Jin, Sathyamoorthy Rajendran, Kun Zhang:
On the Three Demons in Causality in Finance: Time Resolution, Nonstationarity, and Latent Factors. CoRR abs/2401.05414 (2024) - [i164]Guanglin Zhou, Zhongyi Han, Shiming Chen, Biwei Huang, Liming Zhu, Tongliang Liu, Lina Yao, Kun Zhang:
HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain Generalization. CoRR abs/2401.09716 (2024) - [i163]Guangyi Chen, Yifan Shen, Zhenhao Chen, Xiangchen Song, Yuewen Sun, Weiran Yao, Xiao Liu, Kun Zhang:
CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process. CoRR abs/2401.14535 (2024) - [i162]Yewen Fan, Nian Si, Xiangchen Song, Kun Zhang:
Calibration-then-Calculation: A Variance Reduced Metric Framework in Deep Click-Through Rate Prediction Models. CoRR abs/2401.16692 (2024) - [i161]Chenxi Liu, Yongqiang Chen, Tongliang Liu, Mingming Gong, James Cheng, Bo Han, Kun Zhang:
Discovery of the Hidden World with Large Language Models. CoRR abs/2402.03941 (2024) - [i160]Kun Zhang, Shaoan Xie, Ignavier Ng, Yujia Zheng:
Causal Representation Learning from Multiple Distributions: A General Setting. CoRR abs/2402.05052 (2024) - [i159]Yuhang Liu, Zhen Zhang, Dong Gong, Biwei Huang, Mingming Gong, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Revealing Multimodal Contrastive Representation Learning through Latent Partial Causal Models. CoRR abs/2402.06223 (2024) - [i158]Loka Li, Guangyi Chen, Yusheng Su, Zhenhao Chen, Yixuan Zhang, Eric P. Xing, Kun Zhang:
Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models. CoRR abs/2402.12563 (2024) - [i157]Zijian Li, Ruichu Cai, Zhenhui Yang, Haiqin Huang, Guangyi Chen, Yifan Shen, Zhengming Chen, Xiangchen Song, Zhifeng Hao, Kun Zhang:
When and How: Learning Identifiable Latent States for Nonstationary Time Series Forecasting. CoRR abs/2402.12767 (2024) - [i156]Loka Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, Kun Zhang:
Federated Causal Discovery from Heterogeneous Data. CoRR abs/2402.13241 (2024) - [i155]Hanqi Yan, Lingjing Kong, Lin Gui, Yuejie Chi, Eric P. Xing, Yulan He, Kun Zhang:
Counterfactual Generation with Identifiability Guarantees. CoRR abs/2402.15309 (2024) - [i154]Charvi Rastogi, Xiangchen Song, Zhijing Jin, Ivan Stelmakh, Hal Daumé III, Kun Zhang, Nihar B. Shah:
A Randomized Controlled Trial on Anonymizing Reviewers to Each Other in Peer Review Discussions. CoRR abs/2403.01015 (2024) - [i153]Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, Yang Liu:
Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing Framework. CoRR abs/2403.08743 (2024) - [i152]Haoyue Dai, Ignavier Ng, Yujia Zheng, Zhengqing Gao, Kun Zhang:
Local Causal Discovery with Linear non-Gaussian Cyclic Models. CoRR abs/2403.14843 (2024) - [i151]Haoyue Dai, Ignavier Ng, Gongxu Luo, Peter Spirtes, Petar Stojanov, Kun Zhang:
Gene Regulatory Network Inference in the Presence of Dropouts: a Causal View. CoRR abs/2403.15500 (2024) - [i150]Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi:
Identifiable Latent Neural Causal Models. CoRR abs/2403.15711 (2024) - [i149]Donghuo Zeng, Roberto Legaspi, Yuewen Sun, Xinshuai Dong, Kazushi Ikeda, Peter Spirtes, Kun Zhang:
Counterfactual Reasoning Using Predicted Latent Personality Dimensions for Optimizing Persuasion Outcome. CoRR abs/2404.13792 (2024) - [i148]Zijian Li, Yifan Shen, Kaitao Zheng, Ruichu Cai, Xiangchen Song, Mingming Gong, Zhifeng Hao, Zhengmao Zhu, Guangyi Chen, Kun Zhang:
On the Identification of Temporally Causal Representation with Instantaneous Dependence. CoRR abs/2405.15325 (2024) - [i147]Ruichu Cai, Zhifang Jiang, Zijian Li, Weilin Chen, Xuexin Chen, Zhifeng Hao, Yifan Shen, Guangyi Chen, Kun Zhang:
From Orthogonality to Dependency: Learning Disentangled Representation for Multi-Modal Time-Series Sensing Signals. CoRR abs/2405.16083 (2024) - [i146]Lingjing Kong, Guangyi Chen, Biwei Huang, Eric P. Xing, Yuejie Chi, Kun Zhang:
Learning Discrete Concepts in Latent Hierarchical Models. CoRR abs/2406.00519 (2024) - [i145]Shunxing Fan, Mingming Gong, Kun Zhang:
On the Recoverability of Causal Relations from Temporally Aggregated I.I.D. Data. CoRR abs/2406.02191 (2024) - [i144]Usman Gohar, Zeyu Tang, Jialu Wang, Kun Zhang, Peter L. Spirtes, Yang Liu, Lu Cheng:
Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges. CoRR abs/2406.06736 (2024) - [i143]Zhengming Chen, Ruichu Cai, Feng Xie, Jie Qiao, Anpeng Wu, Zijian Li, Zhifeng Hao, Kun Zhang:
Learning Discrete Latent Variable Structures with Tensor Rank Conditions. CoRR abs/2406.07020 (2024) - [i142]Tianjun Yao, Jiaqi Sun, Defu Cao, Kun Zhang, Guangyi Chen:
MuGSI: Distilling GNNs with Multi-Granularity Structural Information for Graph Classification. CoRR abs/2406.19832 (2024) - [i141]Yujia Zheng, Zeyu Tang, Yiwen Qiu, Bernhard Schölkopf, Kun Zhang:
Detecting and Identifying Selection Structure in Sequential Data. CoRR abs/2407.00529 (2024) - [i140]Zhiqiang Xie, Yujia Zheng, Lizi Ottens, Kun Zhang, Christos Kozyrakis, Jonathan Mace:
Cloud Atlas: Efficient Fault Localization for Cloud Systems using Language Models and Causal Insight. CoRR abs/2407.08694 (2024) - [i139]Wenjie Wang, Biwei Huang, Feng Liu, Xinge You, Tongliang Liu, Kun Zhang, Mingming Gong:
Optimal Kernel Choice for Score Function-based Causal Discovery. CoRR abs/2407.10132 (2024) - [i138]Tianjun Yao, Yongqiang Chen, Zhenhao Chen, Kai Hu, Zhiqiang Shen, Kun Zhang:
Empowering Graph Invariance Learning with Deep Spurious Infomax. CoRR abs/2407.11083 (2024) - [i137]Xinshuai Dong, Ignavier Ng, Biwei Huang, Yuewen Sun, Songyao Jin, Roberto Legaspi, Peter Spirtes, Kun Zhang:
On the Parameter Identifiability of Partially Observed Linear Causal Models. CoRR abs/2407.16975 (2024) - [i136]Yuqin Yang, Mohamed S. Nafea, Negar Kiyavash, Kun Zhang, AmirEmad Ghassami:
Causal Discovery in Linear Models with Unobserved Variables and Measurement Error. CoRR abs/2407.19426 (2024) - [i135]Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Xiangwei Chen, Zexu Sun, Fei Wu, Kun Zhang:
Generalized Encouragement-Based Instrumental Variables for Counterfactual Regression. CoRR abs/2408.05428 (2024) - [i134]Boyang Sun, Ignavier Ng, Guangyi Chen, Yifan Shen, Qirong Ho, Kun Zhang:
Continual Learning of Nonlinear Independent Representations. CoRR abs/2408.05788 (2024) - [i133]Ce Chen, Shaoli Huang, Xuelin Chen, Guangyi Chen, Xiaoguang Han, Kun Zhang, Mingming Gong:
CT4D: Consistent Text-to-4D Generation with Animatable Meshes. CoRR abs/2408.08342 (2024) - [i132]Ignavier Ng, Yujia Zheng, Xinshuai Dong, Kun Zhang:
On the Identifiability of Sparse ICA without Assuming Non-Gaussianity. CoRR abs/2408.10353 (2024) - [i131]Xiangchen Song, Zijian Li, Guangyi Chen, Yujia Zheng, Yewen Fan, Xinshuai Dong, Kun Zhang:
Causal Temporal Representation Learning with Nonstationary Sparse Transition. CoRR abs/2409.03142 (2024) - [i130]Berker Demirel, Lingjing Kong, Kun Zhang, Theofanis Karaletsos, Celestine Mendler-Dünner, Francesco Locatello:
Adjusting Pretrained Backbones for Performativity. CoRR abs/2410.04499 (2024) - [i129]Yingyu Lin, Yuxing Huang, Wenqin Liu, Haoran Deng, Ignavier Ng, Kun Zhang, Mingming Gong, Yi-An Ma, Biwei Huang:
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery. CoRR abs/2410.06407 (2024) - [i128]Anpeng Wu, Kun Kuang, Minqin Zhu, Yingrong Wang, Yujia Zheng, Kairong Han, Baohong Li, Guangyi Chen, Fei Wu, Kun Zhang:
Causality for Large Language Models. CoRR abs/2410.15319 (2024) - [i127]Yiwen Qiu, Yujia Zheng, Kun Zhang:
Identifying Selections for Unsupervised Subtask Discovery. CoRR abs/2410.21616 (2024) - [i126]Klea Ziu, Slavomír Hanzely, Loka Li, Kun Zhang, Martin Takác, Dmitry Kamzolov:
ψDAG: Projected Stochastic Approximation Iteration for DAG Structure Learning. CoRR abs/2410.23862 (2024) - 2023
- [j30]Zeyu Tang, Jiji Zhang, Kun Zhang:
What-is and How-to for Fairness in Machine Learning: A Survey, Reflection, and Perspective. ACM Comput. Surv. 55(13s): 299:1-299:37 (2023) - [j29]Feng Xie, Yan Zeng, Zhengming Chen, Yangbo He, Zhi Geng, Kun Zhang:
Causal discovery of 1-factor measurement models in linear latent variable models with arbitrary noise distributions. Neurocomputing 526: 48-61 (2023) - [j28]Negar Kiyavash, Elias Bareinboim, Todd P. Coleman, Alex Dimakis, Bernhard Schlkopf, Peter Spirtes, Kun Zhang, Robert Nowak:
Editorial Special Issue on Causality: Fundamental Limits and Applications. IEEE J. Sel. Areas Inf. Theory 4: iv (2023) - [j27]Weiwei Cai, Huaidong Zhang, Xuemiao Xu, Shengfeng He, Kun Zhang, Jing Qin:
Contextual-Assisted Scratched Photo Restoration. IEEE Trans. Circuits Syst. Video Technol. 33(10): 5458-5469 (2023) - [j26]Hao Zhang, Yewei Xia, Kun Zhang, Shuigeng Zhou, Jihong Guan:
Conditional Independence Test Based on Residual Similarity. ACM Trans. Knowl. Discov. Data 17(8): 117:1-117:18 (2023) - [j25]Yuewen Sun, Kun Zhang, Changyin Sun:
Model-Based Transfer Reinforcement Learning Based on Graphical Model Representations. IEEE Trans. Neural Networks Learn. Syst. 34(2): 1035-1048 (2023) - [c147]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, Francesco Locatello:
Causal Discovery with Score Matching on Additive Models with Arbitrary Noise. CLeaR 2023: 726-751 - [c146]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, Francesco Locatello:
Scalable Causal Discovery with Score Matching. CLeaR 2023: 752-771 - [c145]Lingjing Kong, Martin Q. Ma, Guangyi Chen, Eric P. Xing, Yuejie Chi, Louis-Philippe Morency, Kun Zhang:
Understanding Masked Autoencoders via Hierarchical Latent Variable Models. CVPR 2023: 7918-7928 - [c144]Shaoan Xie, Yanwu Xu, Mingming Gong, Kun Zhang:
Unpaired Image-to-Image Translation with Shortest Path Regularization. CVPR 2023: 10177-10187 - [c143]Guangyi Chen, Zhenhao Chen, Shunxing Fan, Kun Zhang:
Unsupervised Sampling Promoting for Stochastic Human Trajectory Prediction. CVPR 2023: 17874-17884 - [c142]Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, Kun Zhang:
SmartBrush: Text and Shape Guided Object Inpainting with Diffusion Model. CVPR 2023: 22428-22437 - [c141]Guangyi Chen, Xiao Liu, Guangrun Wang, Kun Zhang, Philip H. S. Torr, Xiao-Ping Zhang, Yansong Tang:
Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer. ICCV 2023: 13899-13909 - [c140]Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, Kun Zhang:
PLOT: Prompt Learning with Optimal Transport for Vision-Language Models. ICLR 2023 - [c139]Yewen Fan, Nian Si, Kun Zhang:
Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation Systems. ICLR 2023 - [c138]Junlong Li, Guangyi Chen, Yansong Tang, Jinan Bao, Kun Zhang, Jie Zhou, Jiwen Lu:
GAIN: On the Generalization of Instructional Action Understanding. ICLR 2023 - [c137]Zeyu Tang, Yatong Chen, Yang Liu, Kun Zhang:
Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors. ICLR 2023 - [c136]Xinyi Wang, Michael Saxon, Jiachen Li, Hongyang Zhang, Kun Zhang, William Yang Wang:
Causal Balancing for Domain Generalization. ICLR 2023 - [c135]Shaoan Xie, Lingjing Kong, Mingming Gong, Kun Zhang:
Multi-domain image generation and translation with identifiability guarantees. ICLR 2023 - [c134]Yujia Zheng, Ignavier Ng, Yewen Fan, Kun Zhang:
Generalized Precision Matrix for Scalable Estimation of Nonparametric Markov Networks. ICLR 2023 - [c133]Ruichu Cai, Zhiyi Huang, Wei Chen, Zhifeng Hao, Kun Zhang:
Causal Discovery with Latent Confounders Based on Higher-Order Cumulants. ICML 2023: 3380-3407 - [c132]Shiming Chen, Wenjin Hou, Ziming Hong, Xiaohan Ding, Yibing Song, Xinge You, Tongliang Liu, Kun Zhang:
Evolving Semantic Prototype Improves Generative Zero-Shot Learning. ICML 2023: 4611-4622 - [c131]Yatong Chen, Zeyu Tang, Kun Zhang, Yang Liu:
Model Transferability with Responsive Decision Subjects. ICML 2023: 4921-4952 - [c130]Yang Liu, Hao Cheng, Kun Zhang:
Identifiability of Label Noise Transition Matrix. ICML 2023: 21475-21496 - [c129]Jiaqi Sun, Lin Zhang, Guangyi Chen, Peng Xu, Kun Zhang, Yujiu Yang:
Feature Expansion for Graph Neural Networks. ICML 2023: 33156-33176 - [c128]Yu Yao, Mingming Gong, Yuxuan Du, Jun Yu, Bo Han, Kun Zhang, Tongliang Liu:
Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? ICML 2023: 39660-39673 - [c127]Yue Yu, Xuan Kan, Hejie Cui, Ran Xu, Yujia Zheng, Xiangchen Song, Yanqiao Zhu, Kun Zhang, Razieh Nabi, Ying Guo, Chao Zhang, Carl Yang:
Deep Dag Learning of Effective Brain Connectivity for FMRI Analysis. ISBI 2023: 1-5 - [c126]Tianjun Yao, Yingxu Wang, Kun Zhang, Shangsong Liang:
Improving the Expressiveness of K-hop Message-Passing GNNs by Injecting Contextualized Substructure Information. KDD 2023: 3070-3081 - [c125]Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, Kun Zhang:
Subspace Identification for Multi-Source Domain Adaptation. NeurIPS 2023 - [c124]Lingjing Kong, Biwei Huang, Feng Xie, Eric P. Xing, Yuejie Chi, Kun Zhang:
Identification of Nonlinear Latent Hierarchical Models. NeurIPS 2023 - [c123]Yuren Liu, Biwei Huang, Zhengmao Zhu, Hong-Long Tian, Mingming Gong, Yang Yu, Kun Zhang:
Learning World Models with Identifiable Factorization. NeurIPS 2023 - [c122]Ignavier Ng, Yujia Zheng, Xinshuai Dong, Kun Zhang:
On the Identifiability of Sparse ICA without Assuming Non-Gaussianity. NeurIPS 2023 - [c121]Xiangchen Song, Weiran Yao, Yewen Fan, Xinshuai Dong, Guangyi Chen, Juan Carlos Niebles, Eric P. Xing, Kun Zhang:
Temporally Disentangled Representation Learning under Unknown Nonstationarity. NeurIPS 2023 - [c120]Hanqi Yan, Lingjing Kong, Lin Gui, Yuejie Chi, Eric P. Xing, Yulan He, Kun Zhang:
Counterfactual Generation with Identifiability Guarantees. NeurIPS 2023 - [c119]Yujia Zheng, Kun Zhang:
Generalizing Nonlinear ICA Beyond Structural Sparsity. NeurIPS 2023 - [i125]Zeyu Tang, Yatong Chen, Yang Liu, Kun Zhang:
Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors. CoRR abs/2301.08987<