


default search action
40th UAI 2024: Barcelona, Spain
- Negar Kiyavash, Joris M. Mooij:

Uncertainty in Artificial Intelligence, 15-19 July 2024, Universitat Pompeu Fabra, Barcelona, Spain. Proceedings of Machine Learning Research 244, PMLR 2024 - Preface. i-xi

- Steven An, Sanjoy Dasgupta:

Convergence Behavior of an Adversarial Weak Supervision Method. 1-49 - Rafael Anderka, Marc Peter Deisenroth, So Takao:

Iterated INLA for State and Parameter Estimation in Nonlinear Dynamical Systems. 50-76 - Shuang Ao, Stefan Rueger, Advaith Siddharthan:

CSS: Contrastive Semantic Similarities for Uncertainty Quantification of LLMs. 77-87 - Imad Aouali, Victor-Emmanuel Brunel, David Rohde, Anna Korba:

Unified PAC-Bayesian Study of Pessimism for Offline Policy Learning with Regularized Importance Sampling. 88-109 - Fabio Arnez, Daniel Alfonso Montoya Vasquez, Ansgar Radermacher, François Terrier:

Latent Representation Entropy Density for Distribution Shift Detection. 110-137 - Baris Askin, Pranay Sharma, Carlee Joe-Wong, Gauri Joshi:

FedAST: Federated Asynchronous Simultaneous Training. 138-172 - Charles K. Assaad, Emilie Devijver, Éric Gaussier, Gregor Goessler, Anouar Meynaoui:

Identifiability of total effects from abstractions of time series causal graphs. 173-185 - Gennaro Auricchio, Harry J. Clough, Jie Zhang:

On the Capacitated Facility Location Problem with Scarce Resources. 186-202 - Mohammad Azizmalayeri, Ameen Abu-Hanna, Giovanni Cinà:

Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations. 203-224 - Damiano Azzolini, Fabrizio Riguzzi:

Inference in Probabilistic Answer Set Programs with Imprecise Probabilities via Optimization. 225-234 - Shaojie Bai, Lanting Zeng, Chengcheng Zhao, Xiaoming Duan, Mohammad Sadegh Talebi, Peng Cheng, Jiming Chen:

Differentially Private No-regret Exploration in Adversarial Markov Decision Processes. 235-272 - Ondrej Bajgar, Alessandro Abate, Konstantinos Gatsis, Michael A. Osborne:

Walking the Values in Bayesian Inverse Reinforcement Learning. 273-287 - Maria-Florina Balcan, Dravyansh Sharma:

Learning Accurate and Interpretable Decision Trees. 288-307 - Alexis Bellot:

Towards Bounding Causal Effects under Markov Equivalence. 308-332 - Marlene Berke, Zhangir Azerbayev, Mario Belledonne, Zenna Tavares, Julian Jara-Ettinger:

MetaCOG: A Heirarchical Probabilistic Model for Learning Meta-Cognitive Visual Representations. 349-359 - Lucas Berry, Axel Brando, David Meger:

Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models. 360-376 - Louis Betzer, Vorapong Suppakitpaisarn, Quentin Hillebrand:

Publishing Number of Walks and Katz Centrality under Local Differential Privacy. 377-393 - Sam Bowyer, Thomas Heap, Laurence Aitchison:

Using Autodiff to Estimate Posterior Moments, Marginals and Samples. 394-417 - Oliver Broadrick, Honghua Zhang, Guy Van den Broeck:

Polynomial Semantics of Tractable Probabilistic Circuits. 418-429 - Simon Buchholz, Junhyung Park, Bernhard Schölkopf:

Products, Abstractions and Inclusions of Causal Spaces. 430-449 - Long Minh Bui, Tho Tran Huu, Duy Dinh, Tan Minh Nguyen, Trong Nghia Hoang:

Revisiting Kernel Attention with Correlated Gaussian Process Representation. 450-470 - Javier Burroni, Justin Domke, Daniel Sheldon:

Sample Average Approximation for Black-Box Variational Inference. 471-498 - Zhongteng Cai, Xueru Zhang, Mohammad Mahdi Khalili:

Privacy-Aware Randomized Quantization via Linear Programming. 499-516 - Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin Jamieson:

Fair Active Learning in Low-Data Regimes. 517-531 - Yuwei Cao, Hao Peng, Angsheng Li, Chenyu You, Zhifeng Hao, Philip S. Yu:

Multi-Relational Structural Entropy. 532-546 - Luís Felipe P. Cattelan, Danilo Silva:

How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks. 547-584 - Aditya Challa, Soma S. Dhavala, Snehanshu Saha:

QuantProb: Generalizing Probabilities along with Predictions for a Pre-trained Classifier. 585-602 - Kushal Chauhan, Rishi Saket, Lorne Applebaum, Ashwinkumar Badanidiyuru, Chandan Giri, Aravindan Raghuveer:

Generalization and Learnability in Multiple Instance Regression. 603-618 - Hengchao Chen, Xin Chen, Mohamad Elmasri, Qiang Sun:

Gradient descent in matrix factorization: Understanding large initialization. 619-647 - Zonghao Chen, Masha Naslidnyk, Arthur Gretton, François-Xavier Briol:

Conditional Bayesian Quadrature. 648-684 - Yuzhu Chen, Fengxiang He, Shi Fu, Xinmei Tian, Dacheng Tao:

Adaptive Time-Stepping Schedules for Diffusion Models. 685-697 - Tong Cheng, Hang Dong, Lu Wang, Bo Qiao, Qingwei Lin, Saravan Rajmohan, Thomas Moscibroda:

SMuCo: Reinforcement Learning for Visual Control via Sequential Multi-view Total Correlation. 698-717 - Yuwen Cheng, Shu Yang:

Inference for Optimal Linear Treatment Regimes in Personalized Decision-making. 718-735 - Abhilash Reddy Chenreddy, Erick Delage:

End-to-end Conditional Robust Optimization. 736-748 - Yoichi Chikahara, Kansei Ushiyama:

Differentiable Pareto-Smoothed Weighting for High-Dimensional Heterogeneous Treatment Effect Estimation. 749-762 - Daniyar Chumbalov, Lars Klein, Lucas Maystre, Matthias Grossglauser:

Fast Interactive Search under a Scale-Free Comparison Oracle. 763-786 - Lucas Clarté, Adrien Vandenbroucque, Guillaume Dalle, Bruno Loureiro, Florent Krzakala, Lenka Zdeborová:

Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression. 787-819 - Pierre Clavier, Erwan Le Pennec, Matthieu Geist:

Towards Minimax Optimality of Model-based Robust Reinforcement Learning. 820-855 - Oscar Clivio, Avi Feller, Chris C. Holmes:

Towards Representation Learning for Weighting Problems in Design-Based Causal Inference. 856-880 - Nicolò Colombo:

Normalizing Flows for Conformal Regression. 881-893 - Tuan Dam, Odalric-Ambrym Maillard, Emilie Kaufmann:

Power Mean Estimation in Stochastic Monte-Carlo Tree Search. 894-918 - Clemens Damke, Eyke Hüllermeier:

Linear Opinion Pooling for Uncertainty Quantification on Graphs. 919-929 - Khoi Tran Dang, Kevin Delmas, Jérémie Guiochet, Joris Guérin:

Can we Defend Against the Unknown? An Empirical Study About Threshold Selection for Neural Network Monitoring. 930-942 - Piersilvio De Bartolomeis, Javier Abad, Konstantin Donhauser, Fanny Yang:

Detecting critical treatment effect bias in small subgroups. 943-965 - Alexander Decruyenaere, Heidelinde Dehaene, Paloma Rabaey, Christiaan Polet, Johan Decruyenaere, Stijn Vansteelandt, Thomas Demeester:

The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data. 966-996 - Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, Yoshua Bengio:

Discrete Probabilistic Inference as Control in Multi-path Environments. 997-1021 - Wei Deng, Qian Zhang, Yian Ma, Zhao Song, Guang Lin:

On Convergence of Federated Averaging Langevin Dynamics. 1022-1054 - Wei Deng, Yu Chen, Nicole Tianjiao Yang, Hengrong Du, Qi Feng, Ricky Tian Qi Chen:

Reflected Schrödinger Bridge for Constrained Generative Modeling. 1055-1082 - Shachi Deshpande, Volodymyr Kuleshov:

Calibrated and Conformal Propensity Scores for Causal Effect Estimation. 1083-1111 - Zixin Ding, Si Chen, Ruoxi Jia, Yuxin Chen:

Learning to Rank for Active Learning via Multi-Task Bilevel Optimization. 1112-1128 - My H. Dinh, James Kotary, Ferdinando Fioretto:

End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty. 1129-1145 - Jing Dong, Jingwei Li, Baoxiang Wang, Jingzhao Zhang:

Online Policy Optimization for Robust Markov Decision Process. 1146-1175 - Hailiang Dong, James Amato, Vibhav Gogate, Nicholas Ruozzi:

Learning Distributionally Robust Tractable Probabilistic Models in Continuous Domains. 1176-1188 - Davide Drago, Andrea Celli, Marek Eliás:

Bandits with Knapsacks and Predictions. 1189-1206 - Joel Dyer, Patrick Cannon, Sebastian M. Schmon:

Approximate Bayesian Computation with Path Signatures. 1207-1231 - Mai Elkady, Thu Bui, Bruno Ribeiro, David I. Inouye:

Vertical Validation: Evaluating Implicit Generative Models for Graphs on Thin Support Regions. 1232-1256 - Shohei Enomoto:

EntProp: High Entropy Propagation for Improving Accuracy and Robustness. 1257-1270 - Mingzhou Fan, Byung-Jun Yoon, Edward R. Dougherty, Nathan M. Urban, Francis J. Alexander, Raymundo Arróyave, Xiaoning Qian:

Multi-fidelity Bayesian Optimization with Multiple Information Sources of Input-dependent Fidelity. 1271-1293 - Xingli Fang, Jung-Eun Kim:

Center-Based Relaxed Learning Against Membership Inference Attacks. 1294-1306 - Xinying Fang, Shouhao Zhou:

Enhancing Patient Recruitment Response in Clinical Trials: an Adaptive Learning Framework. 1307-1322 - Hélène Fargier, Pierre Pomeret-Coquot:

Generalized Expected Utility as a Universal Decision Rule - A Step Forward. 1323-1338 - Yi Feng, Ping Li, Ioannis Panageas, Xiao Wang:

Last-iterate Convergence Separation between Extra-gradient and Optimism in Constrained Periodic Games. 1339-1370 - Nicola Franco, Jakob Spiegelberg, Jeanette Miriam Lorenz, Stephan Günnemann:

Guaranteeing Robustness Against Real-World Perturbations In Time Series Classification Using Conformalized Randomized Smoothing. 1371-1388 - Han Gao, Kaican Li, Weiyan Xie, Zhi Lin, Yongxiang Huang, Luning Wang, Caleb Chen Cao, Nevin L. Zhang:

Consistency Regularization for Domain Generalization with Logit Attribution Matching. 1389-1407 - Daniel Gedon, Amirhesam Abedsoltan, Thomas B. Schön, Mikhail Belkin:

Uncertainty Estimation with Recursive Feature Machines. 1408-1437 - Marco Gigli, Fabio Stella:

Bootstrap Your Conversions: Thompson Sampling for Partially Observable Delayed Rewards. 1438-1452 - Andrew Gracyk, Xiaohui Chen:

GeONet: a neural operator for learning the Wasserstein geodesic. 1453-1478 - Denis A. Gudovskiy, Tomoyuki Okuno, Yohei Nakata:

ContextFlow++: Generalist-Specialist Flow-based Generative Models with Mixed-variable Context Encoding. 1479-1490 - Etash Guha, Jim James, Krishna Acharya, Vidya Muthukumar, Ashwin Pananjady:

One Shot Inverse Reinforcement Learning for Stochastic Linear Bandits. 1491-1512 - Tessa Han, Suraj Srinivas, Himabindu Lakkaraju:

Characterizing Data Point Vulnerability as Average-Case Robustness. 1513-1540 - Minbiao Han, Fengxue Zhang, Yuxin Chen:

No-Regret Learning of Nash Equilibrium for Black-Box Games via Gaussian Processes. 1541-1557 - Juha Harviainen, Mikko Koivisto:

Faster Perfect Sampling of Bayesian Network Structures. 1558-1568 - Leonard Henckel, Theo Würtzen, Sebastian Weichwald:

Adjustment Identification Distance: A gadjid for Causal Structure Learning. 1569-1598 - Christine Herlihy, Jennifer Neville, Tobias Schnabel, Adith Swaminathan:

On Overcoming Miscalibrated Conversational Priors in LLM-based ChatBots. 1599-1620 - Maxime Heuillet, Ola Ahmad, Audrey Durand:

Neural Active Learning Meets the Partial Monitoring Framework. 1621-1639 - Yasunari Hikima, Kazunori Murao, Sho Takemori, Yuhei Umeda:

Quantum Kernelized Bandits. 1640-1657 - Qi Heng Ho, Tyler J. Becker, Benjamin Kraske, Zakariya Laouar, Martin S. Feather, Federico Rossi, Morteza Lahijanian, Zachary Sunberg:

Recursively-Constrained Partially Observable Markov Decision Processes. 1658-1680 - Qi Heng Ho, Martin S. Feather, Federico Rossi, Zachary Sunberg, Morteza Lahijanian:

Sound Heuristic Search Value Iteration for Undiscounted POMDPs with Reachability Objectives. 1681-1697 - Tom Hochsprung, Jakob Runge, Andreas Gerhardus:

A Global Markov Property for Solutions of Stochastic Difference Equations and the corresponding Full Time Graphs. 1698-1726 - Yusu Hong, Junhong Lin:

Revisiting Convergence of AdaGrad with Relaxed Assumptions. 1727-1750 - Mohammad T. Irfan, Hau Chan, Jared Soundy:

Equilibrium Computation in Multidimensional Congestion Games: CSP and Learning Dynamics Approaches. 1751-1779 - Metod Jazbec, Patrick Forré, Stephan Mandt, Dan Zhang, Eric T. Nalisnick:

Early-Exit Neural Networks with Nested Prediction Sets. 1780-1796 - Xiaohan Jiang, Hongbin Zhu:

On the Convergence of Hierarchical Federated Learning with Partial Worker Participation. 1797-1824 - Rasul Kairgeldin, Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:

Adaptive Softmax Trees for Many-Class Classification. 1825-1841 - Peter Johannes Tejlgaard Kampen, Gustav Ragnar Stoettrup Als, Michael Riis Andersen:

Towards Scalable Bayesian Transformers: Investigating stochastic subset selection for NLP. 1842-1862 - Yue Kang, Cho-Jui Hsieh, Thomas Chun Man Lee:

Low-rank Matrix Bandits with Heavy-tailed Rewards. 1863-1889 - Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Nadja Klein, Sahin Albayrak:

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection. 1890-1900 - Yuta Kawakami, Manabu Kuroki, Jin Tian:

Probabilities of Causation for Continuous and Vector Variables. 1901-1921 - Yuta Kawakami, Manabu Kuroki, Jin Tian:

Identification and Estimation of Conditional Average Partial Causal Effects via Instrumental Variable. 1922-1952 - Armin Kekic, Bernhard Schölkopf, Michel Besserve:

Targeted Reduction of Causal Models. 1953-1980 - Tung Khong, Cong Tran, Cuong Pham:

Active Learning Framework for Incomplete Networks. 1981-1998 - Jonghwan Kim, Inwoo Hwang, Sanghack Lee:

Causal Discovery with Deductive Reasoning: One Less Problem. 1999-2017 - Shufeng Kong, Caihua Liu, Carla Gomes:

ILP-FORMER: Solving Integer Linear Programming with Sequence to Multi-Label Learning. 2018-2028 - Lucas Kook, Chris Kolb, Philipp Schiele, Daniel Dold, Marcel Arpogaus, Cornelius Fritz, Philipp F. M. Baumann, Philipp Kopper, Tobias Pielok, Emilio Dorigatti, David Rügamer:

How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression. 2029-2046 - Patrick K. Kuiper, Ali Hasan, Wenhao Yang, Yuting Ng, Hoda Bidkhori, Jose H. Blanchet, Vahid Tarokh:

Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions. 2047-2063 - Manoj Kumar, Subhanu Halder, Archit Kane, Ruchir Gupta, Sandeep Kumar:

Optimization Framework for Semi-supervised Attributed Graph Coarsening. 2064-2075 - Yunhyeok Kwak, Inwoo Hwang, Dooyoung Kim, Sanghack Lee, Byoung-Tak Zhang:

Efficient Monte Carlo Tree Search via On-the-Fly State-Conditioned Action Abstraction. 2076-2093 - Alan A. Lahoud, Erik Schaffernicht, Johannes A. Stork:

DataSP: A Differential All-to-All Shortest Path Algorithm for Learning Costs and Predicting Paths with Context. 2094-2112 - Sven Lämmle, Can Bogoclu, Robert Vosshall, Anselm Haselhoff, Dirk Roos:

Quantifying Local Model Validity using Active Learning. 2113-2135 - Quinn Lanners, Qin Weng, Marie-Louise Meng, Matthew M. Engelhard:

Common Event Tethering to Improve Prediction of Rare Clinical Events. 2136-2162 - Hanbyul Lee, Qifan Song, Jean Honorio:

Support Recovery in Sparse PCA with General Missing Data. 2163-2187 - Jaron Jia Rong Lee, AmirEmad Ghassami, Ilya Shpitser:

A General Identification Algorithm For Data Fusion Problems Under Systematic Selection. 2188-2204 - Haoyu Lei, Amin Gohari, Farzan Farnia:

On the Inductive Biases of Demographic Parity-based Fair Learning Algorithms. 2205-2225 - Jiao Li, Liangxiao Jiang, Chaoqun Li, Wenjun Zhang:

Label Consistency-based Worker Filtering for Crowdsourcing. 2226-2237 - Jiao Li, Liangxiao Jiang, Xue Wu, Wenjun Zhang:

Learning from Crowds with Dual-View K-Nearest Neighbor. 2238-2249 - Victoria Lin, Eli Ben-Michael, Louis-Philippe Morency:

Optimizing Language Models for Human Preferences is a Causal Inference Problem. 2250-2270 - Ofir Lindenbaum, Yariv Aizenbud, Yuval Kluger:

Transductive and Inductive Outlier Detection with Robust Autoencoders. 2271-2293 - Jiashun Liu, Xiaotian Hao, Jianye Hao, Yan Zheng, Yujing Hu, Changjie Fan, Tangjie Lv, Zhipeng Hu:

Hybrid CtrlFormer: Learning Adaptive Search Space Partition for Hybrid Action Control via Transformer-based Monte Carlo Tree Search. 2294-2308 - Xinyang Liu, Dongsheng Wang, Bowei Fang, Miaoge Li, Yishi Xu, Zhibin Duan, Bo Chen, Mingyuan Zhou:

Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models. 2309-2330 - Jorge Loría, Anindya Bhadra:

Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance. 2331-2349 - Jacqueline R. M. A. Maasch, Weishen Pan, Shantanu Gupta, Volodymyr Kuleshov, Kyra Gan, Fei Wang:

Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs. 2350-2382 - Vineet Malik, Kevin Bello, Asish Ghoshal, Jean Honorio:

Identifying Causal Changes Between Linear Structural Equation Models. 2383-2398 - Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini, Stefano Teso:

BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts. 2399-2433 - Charles C. Margossian, David M. Blei:

Amortized Variational Inference: When and Why? 2434-2449 - Julien Martinelli, Ayush Bharti, Armi Tiihonen, S. T. John, Louis Filstroff, Sabina J. Sloman, Patrick Rinke, Samuel Kaski:

Learning relevant contextual variables within Bayesian optimization. 2450-2470 - Natalia Martinez Gil, Dhaval Patel, Chandra Reddy, Giridhar Ganapavarapu, Roman Vaculín, Jayant Kalagnanam:

Identifying Homogeneous and Interpretable Groups for Conformal Prediction. 2471-2485 - Riccardo Massidda, Sara Magliacane, Davide Bacciu:

Learning Causal Abstractions of Linear Structural Causal Models. 2486-2515 - Saurabh Mathur, Alessandro Antonucci, Sriraam Natarajan:

Knowledge Intensive Learning of Credal Networks. 2516-2526 - Daniil Merkulov, Daria Cherniuk, Alexander Rudikov, Ivan V. Oseledets, Ekaterina A. Muravleva, Aleksandr Mikhalev, Boris Kashin:

Quantization of Large Language Models with an Overdetermined Basis. 2527-2536 - Alexander Mey, Rui Manuel Castro:

Invariant Causal Prediction with Local Models. 2537-2559 - Manuj Mishra, James Fox, Michael J. Wooldridge:

Characterising Interventions in Causal Games. 2560-2572 - Shuwa Miura, Olivier Buffet, Shlomo Zilberstein:

Approximation Algorithms for Observer Aware MDPs. 2573-2586 - Devina Mohan, Anna M. M. Scaife:

Evaluating Bayesian deep learning for radio galaxy classification. 2587-2597 - Sang Bin Moon, Abolfazl Hashemi:

Optimistic Regret Bounds for Online Learning in Adversarial Markov Decision Processes. 2598-2622 - Ron Nafshi, Maggie Makar:

Partial identification of the maximum mean discrepancy with mismeasured data. 2623-2645 - Andrzej Nagórko, Marcin Waniek, Malgorzata Róg, Michal Tomasz Godziszewski, Barbara Rosiak, Tomasz Pawel Michalak:

General Markov Model for Solving Patrolling Games. 2646-2669 - Adhyyan Narang, Omid Sadeghi, Lillian J. Ratliff, Maryam Fazel, Jeff A. Bilmes:

Efficient Interactive Maximization of BP and Weakly Submodular Objectives. 2670-2699 - Utkarsh Nath, Yancheng Wang, Yingzhen Yang:

Neural Architecture Search Finds Robust Models by Knowledge Distillation. 2700-2715 - Achille Nazaret, David M. Blei:

Extremely Greedy Equivalence Search. 2716-2745 - Tin Lok James Ng:

A Generalized Bayesian Approach to Distribution-on-Distribution Regression. 2746-2765 - Hieu Trung Nguyen, Duy Nguyen, Khoa D. Doan, Viet Anh Nguyen:

Cold-start Recommendation by Personalized Embedding Region Elicitation. 2766-2786 - Prashansa Panda, Shalabh Bhatnagar:

Finite-Time Analysis of Three-Timescale Constrained Actor-Critic and Constrained Natural Actor-Critic Algorithms. 2787-2834 - Young-Jin Park, Hao Wang, Shervin Ardeshir, Navid Azizan:

Quantifying Representation Reliability in Self-Supervised Learning Models. 2835-2860 - Bobak Pezeshki, Kalev Kask, Alexander Ihler, Rina Dechter:

Value-Based Abstraction Functions for Abstraction Sampling. 2861-2901 - Thai-Hoang Pham, Xueru Zhang, Ping Zhang:

Non-stationary Domain Generalization: Theory and Algorithm. 2902-2927 - Trung Phung, Jaron J. R. Lee, Opeyemi Oladapo-Shittu, Eili Y. Klein, Ayse Pinar Gurses, Susan M. Hannum, Kimberly Weems, Jill A. Marsteller, Sara E. Cosgrove, Sara C. Keller, Ilya Shpitser:

Zero Inflation as a Missing Data Problem: a Proxy-based Approach. 2928-2955 - Matías P. Pizarro B., Dorothea Kolossa, Asja Fischer:

DistriBlock: Identifying adversarial audio samples by leveraging characteristics of the output distribution. 2956-2988 - Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos:

Neural Optimal Transport with Lagrangian Costs. 2989-3003 - Harsh Poonia, Moritz Willig, Zhongjie Yu, Matej Zecevic, Kristian Kersting, Devendra Singh Dhami:

χSPN: Characteristic Interventional Sum-Product Networks for Causal Inference in Hybrid Domains. 3004-3020 - Han Qi, Guo Fei, Li Zhu:

Graph Feedback Bandits with Similar Arms. 3021-3040 - Ben Rank, Stelios Triantafyllou, Debmalya Mandal, Goran Radanovic:

Performative Reinforcement Learning in Gradually Shifting Environments. 3041-3075 - Kevin Ren, Yewon Byun, Bryan Wilder:

Decision-Focused Evaluation of Worst-Case Distribution Shift. 3076-3093 - Teodora Reu, Francisco Vargas, Anna Kerekes, Michael M. Bronstein:

To smooth a cloud or to pin it down: Expressiveness guarantees and insights on score matching in denoising diffusion models. 3094-3120 - Amit Rozner, Barak Battash, Henry Li, Lior Wolf, Ofir Lindenbaum:

Anomaly Detection with Variance Stabilized Density Estimation. 3121-3137 - Aadirupa Saha, Arun Rajkumar:

A Graph Theoretic Approach for Preference Learning with Feature Information. 3138-3158 - Yusuf Sale, Paul Hofman, Timo Löhr, Lisa Wimmer, Thomas Nagler, Eyke Hüllermeier:

Label-wise Aleatoric and Epistemic Uncertainty Quantification. 3159-3179 - Wangduk Seo, Jaesung Lee:

Unsupervised Feature Selection towards Pattern Discrimination Power. 3180-3197 - Jongyun Shin, Seungjin Han, Jangho Kim:

Cooperative Meta-Learning with Gradient Augmentation. 3198-3210 - Michael Shvartsman, Benjamin Letham, Eytan Bakshy, Stephen Keeley:

Response Time Improves Gaussian Process Models for Perception and Preferences. 3211-3226 - Abhishek Sinha:

BanditQ: Fair Bandits with Guaranteed Rewards. 3227-3244 - Sabina J. Sloman, Ayush Bharti, Julien Martinelli, Samuel Kaski:

Bayesian Active Learning in the Presence of Nuisance Parameters. 3245-3263 - Jy-yong Sohn, Dohyun Kwon, Seoyeon An, Kangwook Lee:

Memorization Capacity for Additive Fine-Tuning with Small ReLU Networks. 3264-3278 - Samuel Sokota, Dylan Sam, Christian Schröder de Witt, Spencer Compton, Jakob N. Foerster, J. Zico Kolter:

Computing Low-Entropy Couplings for Large-Support Distributions. 3279-3298 - Rustem Takhanov:

Multi-layer random features and the approximation power of neural networks. 3299-3322 - Jiyuan Tan, Chenyu Xue, Chuwen Zhang, Qi Deng, Dongdong Ge, Yinyu Ye:

A Homogenization Approach for Gradient-Dominated Stochastic Optimization. 3323-3344 - Kai Z. Teh, Kayvan Sadeghi, Terry Soo:

Localised Natural Causal Learning Algorithms for Weak Consistency Conditions. 3345-3355 - Karim Tit, Teddy Furon:

Fast Reliability Estimation for Neural Networks with Adversarial Attack-Driven Importance Sampling. 3356-3367 - Piyush Tiwary, Kumar Shubham, Vivek Kashyap, Prathosh A. P.:

Bayesian Pseudo-Coresets via Contrastive Divergence. 3368-3390 - Filippo Valdettaro, Aldo Faisal:

Offline Bayesian Aleatoric and Epistemic Uncertainty Quantification and Posterior Value Optimisation in Finite-State MDPs. 3391-3409 - Thijs van Ommen:

Efficiently Deciding Algebraic Equivalence of Bow-Free Acyclic Path Diagrams. 3410-3424 - Shyam Venkatasubramanian, Ahmed Aloui, Vahid Tarokh:

Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks. 3425-3447 - Shresth Verma, Yunfan Zhao, Sanket Shah, Niclas Boehmer, Aparna Taneja, Milind Tambe:

Group Fairness in Predict-Then-Optimize Settings for Restless Bandits. 3448-3469 - Yudan Wang, Shaofeng Zou, Yue Wang:

Model-Free Robust Reinforcement Learning with Sample Complexity Analysis. 3470-3513 - Ziqiao Wang, Yongyi Mao:

Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States. 3514-3539 - Zichen Wang, Chuanhao Li, Chenyu Song, Lianghui Wang, Quanquan Gu, Huazheng Wang:

Pure Exploration in Asynchronous Federated Bandits. 3540-3570 - Zhi Wang, Geelon So, Ramya Korlakai Vinayak:

Metric Learning from Limited Pairwise Preference Comparisons. 3571-3602 - Jing Wang, Yunfei Teng, Anna Choromanska:

AutoDrop: Training Deep Learning Models with Automatic Learning Rate Drop. 3603-3629 - Xiao Wang, Jia Wang, Tong Zhao, Yijie Wang, Nan Zhang, Yong Zang, Sha Cao, Chi Zhang:

Bias-aware Boolean Matrix Factorization Using Disentangled Representation Learning. 3630-3642 - Hanjing Wang, Qiang Ji:

Beyond Dirichlet-based Models: When Bayesian Neural Networks Meet Evidential Deep Learning. 3643-3665 - Houston Warren, Rafael Oliveira, Fabio T. Ramos:

Stein Random Feature Regression. 3666-3688 - David S. Watson, Jordan Penn, Lee M. Gunderson, Gecia Bravo Hermsdorff, Afsaneh Mastouri, Ricardo Silva:

Bounding causal effects with leaky instruments. 3689-3710 - Dorina Weichert, Alexander Kister, Sebastian Houben, Patrick Link, Gunar Ernis:

Robust Entropy Search for Safe Efficient Bayesian Optimization. 3711-3729 - Justin Weltz, Eric Laber, Alexander Volfovsky:

Hidden Population Estimation with Indirect Inference and Auxiliary Information. 3730-3746 - Qianlong Wen, Zhongyu Ouyang, Chunhui Zhang, Yiyue Qian, Chuxu Zhang, Yanfang Ye:

GCVR: Reconstruction from Cross-View Enable Sufficient and Robust Graph Contrastive Learning. 3747-3764 - Eliot Wong-Toi, Alex Boyd, Vincent Fortuin, Stephan Mandt:

Understanding Pathologies of Deep Heteroskedastic Regression. 3765-3790 - Mengjing Wu, Junyu Xuan, Jie Lu:

Functional Wasserstein Bridge Inference for Bayesian Deep Learning. 3791-3815 - Songli Wu, Liang Du, Jiaqi Yang, Yuai Wang, De-Chuan Zhan, Shuang Zhao, Zixun Sun:

RE-SORT: Removing Spurious Correlation in Multilevel Interaction for CTR Prediction. 3816-3828 - Antonia Wüst, Wolfgang Stammer, Quentin Delfosse, Devendra Singh Dhami, Kristian Kersting:

Pix2Code: Learning to Compose Neural Visual Concepts as Programs. 3829-3852 - Xingzi Xu, Ali Hasan, Jie Ding, Vahid Tarokh:

Base Models for Parabolic Partial Differential Equations. 3853-3878 - Zhi Xu, Bin Sun, Yue Bai, Yun Fu:

α-Former: Local-Feature-Aware (L-FA) Transformer. 3879-3892 - Junyu Xuan, Mengjing Wu, Zihe Liu, Jie Lu:

Functional Wasserstein Variational Policy Optimization. 3893-3911 - Yihao Xue, Kyle Whitecross, Baharan Mirzasoleiman:

Investigating the Impact of Model Width and Density on Generalization in Presence of Label Noise. 3912-3935 - Wenhan Yang, Baharan Mirzasoleiman:

Graph Contrastive Learning under Heterophily via Graph Filters. 3936-3955 - Junhui Yang, Rohit Bhattacharya, Youjin Lee, Ted Westling:

Statistical and Causal Robustness for Causal Null Hypothesis Tests. 3956-3978 - Lingyun Yao, Martin Trapp, Jelin Leslin, Gaurav Singh, Peng Zhang, Karthekeyan Periasamy, Martin Andraud:

On Hardware-efficient Inference in Probabilistic Circuits. 3979-3996 - Xun Yao, Zijian Huang, Xinrong Hu, Jie Yang, Yi Guo:

Masking the Unknown: Leveraging Masked Samples for Enhanced Data Augmentation. 3997-4010 - Wenzhe Yin, Shujian Yu, Yicong Lin, Jie Liu, Jan-Jakob Sonke, Efstratios Gavves:

Domain Adaptation with Cauchy-Schwarz Divergence. 4011-4040 - Zishun Yu, Siteng Kang, Xinhua Zhang:

Offline Reward Perturbation Boosts Distributional Shift in Online RL. 4041-4055 - Yaolong Yu, Haipeng Chen:

Decentralized Online Learning in General-Sum Stackelberg Games. 4056-4077 - Lorenzo Zambon, Dario Azzimonti, Nicolò Rubattu, Giorgio Corani:

Probabilistic reconciliation of mixed-type hierarchical time series. 4078-4095 - Min Zeng, Haiqin Yang, Wei Xue, Qifeng Liu, Yike Guo:

Dirichlet Continual Learning: Tackling Catastrophic Forgetting in NLP. 4096-4108 - Fabio Massimo Zennaro, Nicholas Bishop, Joel Dyer, Yorgos Felekis, Anisoara Calinescu, Michael J. Wooldridge, Theodoros Damoulas:

Causally Abstracted Multi-armed Bandits. 4109-4139 - Zhiheng Zhang, Xinyan Su:

Partial Identification with Proxy of Latent Confoundings via Sum-of-ratios Fractional Programming. 4140-4172 - Yirui Zhang, Zhixuan Fang:

Decentralized Two-Sided Bandit Learning in Matching Market. 4173-4191 - Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, Jing Sun:

Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem. 4192-4208 - Zhiqiang Zhang, Yongqiang Jiang, Qian Gao, Zhipeng Wang:

Neighbor Similarity and Multimodal Alignment based Product Recommendation Study. 4209-4218 - Aidong Zhao, Xuyang Zhao, Tianchen Gu, Zhaori Bi, Xinwei Sun, Changhao Yan, Fan Yang, Dian Zhou, Xuan Zeng:

Exploring High-dimensional Search Space via Voronoi Graph Traversing. 4219-4236 - Zhuoran Zheng, Chen Wu, Yeying Jin, Xiuyi Jia:

Trusted re-weighting for label distribution learning. 4237-4249 - Yi Zhou, Yanhao Wang, Long Teng, Qiang Huang, Cen Chen:

Approximate Kernel Density Estimation under Metric-based Local Differential Privacy. 4250-4270

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














