


default search action
13th WSOM+ 2019: Barcelona, Spain
- Alfredo Vellido, Karina Gibert, Cecilio Angulo, José David Martín-Guerrero:

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization - Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28, 2019. Advances in Intelligent Systems and Computing 976, Springer 2020, ISBN 978-3-030-19641-7
Self-organizing Maps: Theoretical Developments
- Jérémy Fix, Hervé Frezza-Buet:

Look and Feel What and How Recurrent Self-Organizing Maps Learn. 3-12 - Xiaofeng Ma, Michael Kirby, Chris Peterson:

Self-Organizing Mappings on the Flag Manifold. 13-22 - Lars Elend

, Oliver Kramer
:
Self-Organizing Maps with Convolutional Layers. 23-32 - Bernard Girau, Andres Upegui

:
Cellular Self-Organising Maps - CSOM. 33-43 - Joshua Taylor, Erzsébet Merényi:

A Probabilistic Method for Pruning CADJ Graphs with Applications to SOM Clustering. 44-54
Practical Applications of Self-Organizing Maps, Learning Vector Quantization and Clustering
- Maia Rosengarten, Sowmya Ramachandran:

SOM-Based Anomaly Detection and Localization for Space Subsystems. 57-69 - Lorena A. Santos, Karine Reis Ferreira

, Michelle Cristina Araújo Picoli
, Gilberto Câmara:
Self-Organizing Maps in Earth Observation Data Cubes Analysis. 70-79 - Alberto Nogales, Álvaro José García-Tejedor, Noemy Martín Sanz, Teresa de Dios Alija

:
Competencies in Higher Education: A Feature Analysis with Self-Organizing Maps. 80-89 - Zefeng Bai, Nitin Jain, Ying Wang, Dominique Haughton:

Using SOM-Based Visualization to Analyze the Financial Performance of Consumer Discretionary Firms. 90-99 - Yann Bernard, Nicolas Hueber, Bernard Girau:

Novelty Detection with Self-Organizing Maps for Autonomous Extraction of Salient Tracking Features. 100-109 - Alaa Ali Hameed

, Naim Ajlouni
, Bekir Karlik
:
Robust Adaptive SOMs Challenges in a Varied Datasets Analytics. 110-119 - Marie Cottrell, Cynthia Faure, Jérôme Lacaille, Madalina Olteanu:

Detection of Abnormal Flights Using Fickle Instances in SOM Maps. 120-129 - Diego P. Sousa, Guilherme A. Barreto, Charles C. Cavalcante

, Cláudio M. S. Medeiros:
LVQ-type Classifiers for Condition Monitoring of Induction Motors: A Performance Comparison. 130-139 - Madalina Olteanu, Jean-Charles Lamirel:

When Clustering the Multiscalar Fingerprint of the City Reveals Its Segregation Patterns. 140-149 - Ashutosh Karna, Karina Gibert:

Using Hierarchical Clustering to Understand Behavior of 3D Printer Sensors. 150-159 - Henry Kvinge

, Michael Kirby, Chris Peterson, Chad Eitel, Tod Clapp:
A Walk Through Spectral Bands: Using Virtual Reality to Better Visualize Hyperspectral Data. 160-165 - Jan Faigl, Milos Prágr

:
Incremental Traversability Assessment Learning Using Growing Neural Gas Algorithm. 166-176
Learning Vector Quantization: Theoretical Developments
- Thomas Villmann, Jensun Ravichandran, Andrea Villmann, David Nebel, Marika Kaden:

Investigation of Activation Functions for Generalized Learning Vector Quantization. 179-188 - Sascha Saralajew, Lars Holdijk, Maike Rees, Thomas Villmann:

Robustness of Generalized Learning Vector Quantization Models Against Adversarial Attacks. 189-199 - Moritz Heusinger, Christoph Raab, Frank-Michael Schleif:

Passive Concept Drift Handling via Momentum Based Robust Soft Learning Vector Quantization. 200-209 - Michael Biehl

, Fthi Abadi, Christina Göpfert
, Barbara Hammer
:
Prototype-Based Classifiers in the Presence of Concept Drift: A Modelling Framework. 210-221
Theoretical Developments in Clustering, Deep Learning and Neural Gas
- Mohammed Oualid Attaoui, Mustapha Lebbah

, Nabil Keskes, Hanene Azzag, Mohammed Ghesmoune:
Soft Subspace Topological Clustering over Evolving Data Stream. 225-230 - Sascha Fleer

, Helge J. Ritter:
Solving a Tool-Based Interaction Task Using Deep Reinforcement Learning with Visual Attention. 231-240 - David N. Coelho, Guilherme A. Barreto:

Approximate Linear Dependence as a Design Method for Kernel Prototype-Based Classifiers. 241-250 - Shannon Stiverson, Michael Kirby, Chris Peterson:

Subspace Quantization on the Grassmannian. 251-260 - Tina Geweniger, Thomas Villmann:

Variants of Fuzzy Neural Gas. 261-270 - Rudolf J. Szadkowski

, Jan Drchal, Jan Faigl:
Autoencoders Covering Space as a Life-Long Classifier. 271-281
Life Science Applications
- Camden Jansen, Ali Mortazavi:

Progressive Clustering and Characterization of Increasingly Higher Dimensional Datasets with Living Self-organizing Maps. 285-293 - Patrick Riley

, Iván Olier
, Marc Rea
, Paulo Lisboa, Sandra Ortega-Martorell
:
A Voting Ensemble Method to Assist the Diagnosis of Prostate Cancer Using Multiparametric MRI. 294-303 - Meenal Srivastava, Iván Olier

, Patrick Riley
, Paulo Lisboa, Sandra Ortega-Martorell
:
Classifying and Grouping Mammography Images into Communities Using Fisher Information Networks to Assist the Diagnosis of Breast Cancer. 304-313 - Adrián Bazaga, Alfredo Vellido:

Network Community Cluster-Based Analysis for the Identification of Potential Leukemia Drug Targets. 314-323 - Thomas Villmann, Marika Kaden, Szymon Wasik, Mateusz Kudla, Kaja Gutowska

, Andrea Villmann, Jacek Blazewicz
:
Searching for the Origins of Life - Detecting RNA Life Signatures Using Learning Vector Quantization. 324-333 - Gen Niina, Heizo Tokutaka, Masaaki Ohkita, Nobuhiko Kasezawa:

Simultaneous Display of Front and Back Sides of Spherical SOM for Health Data Analysis. 334-339

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














