


default search action
Computational Statistics & Data Analysis, Volume 71
Volume 71, March 2014
- Dankmar Böhning, Christian Hennig, Geoffrey J. McLachlan, Paul D. McNicholas

:
The 2nd special issue on advances in mixture models. 1-2
- Donatella Vicari

, Marco Alfò
:
Model based clustering of customer choice data. 3-13 - Norma Bargary

, John Hinde, E. Holian:
Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data. 14-29 - Stijn Jaspers, Marc Aerts, Geert Verbeke

, Pierre-Alexandre Beloeil:
A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance. 30-42 - Shu-Kay Ng

, Geoffrey J. McLachlan:
Mixture models for clustering multilevel growth trajectories. 43-51 - Charles Bouveyron, Camille Brunet-Saumard:

Model-based clustering of high-dimensional data: A review. 52-78 - Daniela G. Calò, Angela Montanari

, Cinzia Viroli
:
A hierarchical modeling approach for clustering probability density functions. 79-91 - Julien Jacques

, Cristian Preda
:
Model-based clustering for multivariate functional data. 92-106 - Athanase Polymenis:

A combined likelihood ratio/information ratio bootstrap technique for estimating the number of components in finite mixtures. 107-115 - Weixin Yao, Yan Wei, Chun Yu:

Robust mixture regression using the t-distribution. 116-127 - Weixing Song, Weixin Yao, Yanru Xing:

Robust mixture regression model fitting by Laplace distribution. 128-137 - Giuliano Galimberti

, Gabriele Soffritti:
A multivariate linear regression analysis using finite mixtures of t distributions. 138-150 - Hwa Kyung Lim, Wai Keung Li, Philip L. H. Yu:

Zero-inflated Poisson regression mixture model. 151-158 - Salvatore Ingrassia

, Simona C. Minotti, Antonio Punzo
:
Model-based clustering via linear cluster-weighted models. 159-182 - Tsung-I Lin:

Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition. 183-195 - Irene Vrbik, Paul D. McNicholas

:
Parsimonious skew mixture models for model-based clustering and classification. 196-210 - Mary Lesperance, Rabih Saab, John Neuhaus:

Nonparametric estimation of the mixing distribution in logistic regression mixed models with random intercepts and slopes. 211-219 - Zhenqiu (Laura) Lu, Zhiyong Zhang

:
Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application. 220-240 - Shirley Pledger, Richard Arnold

:
Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection. 241-261 - Silvia Bacci

, Francesco Bartolucci
:
Mixtures of equispaced normal distributions and their use for testing symmetry with univariate data. 262-272
- Cathy W. S. Chen

, David B. Dunson
, Sylvia Frühwirth-Schnatter
, Stephen G. Walker:
Special issue on Bayesian computing, methods and applications. 273
- Carlos A. Abanto-Valle

, Dipak K. Dey:
State space mixed models for binary responses with scale mixture of normal distributions links. 274-287 - David Azriel:

Optimal sequential designs in phase I studies. 288-297 - Stelios D. Bekiros

, Alessia Paccagnini
:
Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models. 298-323 - Bingshu E. Chen

, Wenyu Jiang, Dongsheng Tu:
A hierarchical Bayes model for biomarker subset effects in clinical trials. 324-334 - Yuhui Chen, Timothy E. Hanson:

Bayesian nonparametric k-sample tests for censored and uncensored data. 335-346 - S. McKay Curtis, Sayantan Banerjee

, Subhashis Ghosal
:
Fast Bayesian model assessment for nonparametric additive regression. 347-358 - Stefano Grassi, Tommaso Proietti

:
Characterising economic trends by Bayesian stochastic model specification search. 359-374 - Mayetri Gupta

:
An evolutionary Monte Carlo algorithm for Bayesian block clustering of data matrices. 375-391 - Sarah E. Heaps

, Richard J. Boys, Malcolm Farrow:
Computation of marginal likelihoods with data-dependent support for latent variables. 392-401 - Ick-Hoon Jin

, Faming Liang:
Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants. 402-416 - Antonio Lijoi, Bernardo Nipoti

, Igor Prünster
:
Dependent mixture models: Clustering and borrowing information. 417-433 - Trevelyan J. McKinley, Joshua V. Ross

, Rob Deardon, Alex R. Cook
:
Simulation-based Bayesian inference for epidemic models. 434-447 - Joris Mulder

:
Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses. 448-463 - Lizbeth Naranjo

, Jacinto Martín
, Carlos J. Pérez
:
Bayesian binary regression with exponential power link. 464-476 - Luis E. Nieto-Barajas

:
Bayesian semiparametric analysis of short- and long-term hazard ratios with covariates. 477-490 - David J. Nott

, Lucy A. Marshall
, Mark Fielding, Shie-Yui Liong:
Mixtures of experts for understanding model discrepancy in dynamic computer models. 491-505 - Gabriel Nuñez-Antonio, Eduardo Gutiérrez-Peña

:
A Bayesian model for longitudinal circular data based on the projected normal distribution. 506-519 - Yu Qiu, Daniel J. Nordman, Stephen B. Vardeman:

One-sample Bayes inference for symmetric distributions of 3-D rotations. 520-529 - Tuomas Rajala

, Antti Penttinen:
Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range. 530-541 - Anne Sabourin

, Philippe Naveau
:
Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization. 542-567 - Mike K. P. So

, Raymond K. S. Chan:
Bayesian analysis of tail asymmetry based on a threshold extreme value model. 568-587 - Charlotte Soneson, Magnus Fontes:

Incorporation of gene exchangeabilities improves the reproducibility of gene set rankings. 588-598 - Luigi Spezia, S. L. Cooksley, M. J. Brewer, D. Donnelly, A. Tree:

Modelling species abundance in a river by Negative Binomial hidden Markov models. 599-614 - Frank van der Meulen

, Moritz Schauer
, Harry van Zanten:
Reversible jump MCMC for nonparametric drift estimation for diffusion processes. 615-632 - Lichun Wang, Radhey S. Singh:

Linear Bayes estimator for the two-parameter exponential family under type II censoring. 633-642 - Gentry White

, Michael D. Porter
:
GPU accelerated MCMC for modeling terrorist activity. 643-651
- S. Ejaz Ahmed, Gerda Claeskens

, Hidetoshi Shimodaira
, Stefan Van Aelst
:
Special issue on Model Selection and High Dimensional Data Reduction. 652-653
- Rudolf Beran:

Hypercube estimators: Penalized least squares, submodel selection, and numerical stability. 654-666 - A. Blommaert, Niel Hens

, Philippe Beutels
:
Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations. 667-680 - David Dernoncourt, Blaise Hanczar, Jean-Daniel Zucker

:
Analysis of feature selection stability on high dimension and small sample data. 681-693 - Peter Hall, Jing-Hao Xue:

On selecting interacting features from high-dimensional data. 694-708 - Luís F. Martins

, Vasco J. Gabriel
:
Linear instrumental variables model averaging estimation. 709-724 - Jan Mielniczuk

, Pawel Teisseyre
:
Using random subspace method for prediction and variable importance assessment in linear regression. 725-742 - Mathilde Mougeot, Dominique Picard, Karine Tribouley:

LOL selection in high dimension. 743-757 - Michael Schomaker

, Christian Heumann:
Model selection and model averaging after multiple imputation. 758-770 - Martin Vincent, Niels Richard Hansen

:
Sparse group lasso and high dimensional multinomial classification. 771-786
- Ana Colubi, Thierry Denoeux

:
Special issue on imprecision in statistical data analysis. 787-788
- Joaquín Abellán, Rebecca M. Baker, Frank P. A. Coolen, Richard J. Crossman, Andrés R. Masegosa:

Classification with decision trees from a nonparametric predictive inference perspective. 789-802 - Christine Choirat

, Raffaello Seri
:
Bootstrap confidence sets for the Aumann mean of a random closed set. 803-817 - Giorgio Corani

, Alessandro Antonucci
:
Credal ensembles of classifiers. 818-831 - Benoît Frénay

, Gauthier Doquire, Michel Verleysen
:
Estimating mutual information for feature selection in the presence of label noise. 832-848 - Jan Hannig

, Randy C. S. Lai, Thomas C. M. Lee:
Computational issues of generalized fiducial inference. 849-858 - Jesús López-Fidalgo

, María Jesús Rivas-López
:
Optimal experimental designs for partial likelihood information. 859-867 - Ignacio Montes

, Enrique Miranda
, Susana Montes:
Stochastic dominance with imprecise information. 868-886
- Peter Filzmoser

, Cristian Gatu
, Achim Zeileis
:
Special issue on statistical algorithms and software in R. 887-888
- Thomas W. Yee

:
Reduced-rank vector generalized linear models with two linear predictors. 889-902 - Adriano Polpo

, Cassio P. de Campos, Debajyoti Sinha, Stuart R. Lipsitz, Jianhang Lin:
Transform both sides model: A parametric approach. 903-913 - Giovanni Millo:

Maximum likelihood estimation of spatially and serially correlated panels with random effects. 914-933 - Nina Golyandina

, Anton I. Korobeynikov
:
Basic Singular Spectrum Analysis and forecasting with R. 934-954 - William H. Asquith:

Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R. 955-970 - Francesco Bartolucci

, Silvia Bacci
, Michela Gnaldi:
MultiLCIRT: An R package for multidimensional latent class item response models. 971-985 - Manuel J. A. Eugster, Friedrich Leisch

, Carolin Strobl
:
(Psycho-)analysis of benchmark experiments: A formal framework for investigating the relationship between data sets and learning algorithms. 986-1000 - Liqun Wang, Chel Hee Lee:

Discretization-based direct random sample generation. 1001-1010 - Ching-Wei Cheng, Ying-Chao Hung

, Narayanaswamy Balakrishnan:
Generating beta random numbers and Dirichlet random vectors in R: The package rBeta2009. 1011-1020 - Clément Chevalier, Victor Picheny, David Ginsbourger:

KrigInv: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging. 1021-1034 - Victor Picheny, David Ginsbourger:

Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package. 1035-1053 - Dirk Eddelbuettel, Conrad Sanderson:

RcppArmadillo: Accelerating R with high-performance C++ linear algebra. 1054-1063
- Steven Gilmour, Roger W. Payne:

Special issue on algorithms for design of experiments. 1064-1065
- Haftom T. Abebe

, Frans E. S. Tan, Gerard J. P. Van Breukelen
, Martijn P. F. Berger:
Bayesian D-optimal designs for the two parameter logistic mixed effects model. 1066-1076 - B. Almohaimeed, Alexander N. Donev:

Experimental designs for drug combination studies. 1077-1087 - Alexis Boukouvalas, Dan Cornford

, Milan Stehlík
:
Optimal design for correlated processes with input-dependent noise. 1088-1102 - Holger Dette, Andrey Pepelyshev

, Anatoly A. Zhigljavsky
:
'Nearly' universally optimal designs for models with correlated observations. 1103-1112 - Norbert Gaffke, Ulrike Graßhoff, Rainer Schwabe:

Algorithms for approximate linear regression design with application to a first order model with heteroscedasticity. 1113-1123 - Stelios D. Georgiou

, Stella Stylianou
, Manohar Aggarwal:
A class of composite designs for response surface methodology. 1124-1133 - Janet D. Godolphin

, H. R. Warren:
An efficient procedure for the avoidance of disconnected incomplete block designs. 1134-1146 - Alex J. Gutman, Edward D. White, Dennis K. J. Lin, Raymond R. Hill:

Augmenting supersaturated designs with Bayesian D-optimality. 1147-1158 - Radoslav Harman

, Lenka Filová:
Computing efficient exact designs of experiments using integer quadratic programming. 1159-1167 - S. Loeza-Serrano, Alexander N. Donev:

Construction of experimental designs for estimating variance components. 1168-1177 - Lu Lu

, Christine M. Anderson-Cook, Dennis K. J. Lin:
Optimal designed experiments using a Pareto front search for focused preference of multiple objectives. 1178-1192 - Francesco Sambo, Matteo Borrotti

, Kalliopi Mylona
:
A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments. 1193-1207 - Chiara Tommasi

, Juan M. Rodríguez-Díaz
, M. Teresa Santos-Martín
:
Integral approximations for computing optimum designs in random effects logistic regression models. 1208-1220

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














