


default search action
Journal of Machine Learning Research, Volume 8
Volume 8, 2007
- Nicolás García-Pedrajas, César Ignacio García-Osorio, Colin Fyfe:

Nonlinear Boosting Projections for Ensemble Construction. 1-33 - Ya Xue, Xuejun Liao, Lawrence Carin, Balaji Krishnapuram:

Multi-Task Learning for Classification with Dirichlet Process Priors. 35-63 - Marc Teboulle:

A Unified Continuous Optimization Framework for Center-Based Clustering Methods. 65-102 - Rocío Alaíz-Rodríguez, Alicia Guerrero-Curieses, Jesús Cid-Sueiro:

Minimax Regret Classifier for Imprecise Class Distributions. 103-130 - Nikolaj Tatti:

Distances between Data Sets Based on Summary Statistics. 131-154 - Tapani Raiko, Harri Valpola, Markus Harva, Juha Karhunen:

Building Blocks for Variational Bayesian Learning of Latent Variable Models. 155-201 - Sanjoy Dasgupta, Leonard J. Schulman

:
A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians. 203-226 - Roni Khardon, Gabriel Wachman:

Noise Tolerant Variants of the Perceptron Algorithm. 227-248 - Yiming Ying, Ding-Xuan Zhou:

Learnability of Gaussians with Flexible Variances. 249-276 - Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, Andrew Wan:

Separating Models of Learning from Correlated and Uncorrelated Data. 277-290 - Gaëlle Loosli, Stéphane Canu:

Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets". 291-301 - Nikolas List, Hans Ulrich Simon:

General Polynomial Time Decomposition Algorithms. 303-321 - Michael Biehl, Anarta Ghosh, Barbara Hammer:

Dynamics and Generalization Ability of LVQ Algorithms. 323-360 - Kenji Fukumizu, Francis R. Bach, Arthur Gretton:

Statistical Consistency of Kernel Canonical Correlation Analysis. 361-383 - Marco Reisert, Hans Burkhardt:

Learning Equivariant Functions with Matrix Valued Kernels. 385-408 - David Mease, Abraham J. Wyner, Andreas Buja:

Boosted Classification Trees and Class Probability/Quantile Estimation. 409-439 - Ryan M. Rifkin, Ross A. Lippert:

Value Regularization and Fenchel Duality. 441-479 - Niels Landwehr, Kristian Kersting, Luc De Raedt:

Integrating Naïve Bayes and FOIL. 481-507 - Sébastien Gadat, Laurent Younes:

A Stochastic Algorithm for Feature Selection in Pattern Recognition. 509-547 - Marta Arias, Roni Khardon, Jérôme Maloberti:

Learning Horn Expressions with LOGAN-H. 549-587 - Roland Nilsson, José M. Peña, Johan Björkegren, Jesper Tegnér:

Consistent Feature Selection for Pattern Recognition in Polynomial Time. 589-612 - Markus Kalisch, Peter Bühlmann:

Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. 613-636 - Robert Tibshirani, Trevor Hastie:

Margin Trees for High-dimensional Classification. 637-652 - Jennifer Neville, David D. Jensen:

Relational Dependency Networks. 653-692 - Charles Sutton, Andrew McCallum, Khashayar Rohanimanesh:

Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data. 693-723 - Kristen Grauman, Trevor Darrell:

The Pyramid Match Kernel: Efficient Learning with Sets of Features. 725-760 - Art B. Owen:

Infinitely Imbalanced Logistic Regression. 761-773 - Peter L. Bartlett, Ambuj Tewari:

Sparseness vs Estimating Conditional Probabilities: Some Asymptotic Results. 775-790 - Ofer Melnik, Yehuda Vardi, Cun-Hui Zhang:

Concave Learners for Rankboost. 791-812 - Shantanu Chakrabartty, Gert Cauwenberghs:

Gini Support Vector Machine: Quadratic Entropy Based Robust Multi-Class Probability Regression. 813-839 - Gavin C. Cawley, Nicola L. C. Talbot:

Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters. 841-861 - Jean-Yves Audibert, Olivier Bousquet:

Combining PAC-Bayesian and Generic Chaining Bounds. 863-889 - Saher Esmeir, Shaul Markovitch:

Anytime Learning of Decision Trees. 891-933 - Sofus A. Macskassy, Foster J. Provost:

Classification in Networked Data: A Toolkit and a Univariate Case Study. 935-983 - Masashi Sugiyama, Matthias Krauledat, Klaus-Robert Müller:

Covariate Shift Adaptation by Importance Weighted Cross Validation. 985-1005 - Ambuj Tewari, Peter L. Bartlett:

On the Consistency of Multiclass Classification Methods. 1007-1025 - Masashi Sugiyama:

Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. 1027-1061 - Zoltán Szabó, Barnabás Póczos, András Lörincz:

Undercomplete Blind Subspace Deconvolution. 1063-1095 - Mads Dyrholm, Christoforos Christoforou, Lucas C. Parra:

Bilinear Discriminant Component Analysis. 1097-1111 - Joris M. Mooij, Hilbert J. Kappen:

Loop Corrections for Approximate Inference on Factor Graphs. 1113-1143 - Wei Pan, Xiaotong Shen:

Penalized Model-Based Clustering with Application to Variable Selection. 1145-1164 - Chao-Chun Liu, Dao-Qing Dai, Hong Yan:

Local Discriminant Wavelet Packet Coordinates for Face Recognition. 1165-1195 - Margarita Osadchy, Yann LeCun, Matthew L. Miller:

Synergistic Face Detection and Pose Estimation with Energy-Based Models. 1197-1215 - Miroslav Dudík, Steven J. Phillips, Robert E. Schapire:

Maximum Entropy Density Estimation with Generalized Regularization and an Application to Species Distribution Modeling. 1217-1260 - Moshe Koppel, Jonathan Schler, Elisheva Bonchek-Dokow:

Measuring Differentiability: Unmasking Pseudonymous Authors. 1261-1276 - Santosh Srivastava, Maya R. Gupta, Bela A. Frigyik:

Bayesian Quadratic Discriminant Analysis. 1277-1305 - Avrim Blum, Yishay Mansour:

From External to Internal Regret. 1307-1324 - Matthias Hein, Jean-Yves Audibert, Ulrike von Luxburg:

Graph Laplacians and their Convergence on Random Neighborhood Graphs. 1325-1368 - Philippe Rigollet:

Generalization Error Bounds in Semi-supervised Classification Under the Cluster Assumption. 1369-1392 - Jaime S. Cardoso, Joaquim F. Pinto da Costa:

Learning to Classify Ordinal Data: The Data Replication Method. 1393-1429 - Vitaly Feldman:

Attribute-Efficient and Non-adaptive Learning of Parities and DNF Expressions. 1431-1460 - François Laviolette, Mario Marchand:

PAC-Bayes Risk Bounds for Stochastic Averages and Majority Votes of Sample-Compressed Classifiers. 1461-1487 - Rie Johnson, Tong Zhang:

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning. 1489-1517 - Kwangmoo Koh, Seung-Jean Kim, Stephen P. Boyd:

An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression. 1519-1555 - Iain Melvin, Eugene Ie, Jason Weston, William Stafford Noble, Christina S. Leslie:

Multi-class Protein Classification Using Adaptive Codes. 1557-1581 - Onur C. Hamsici, Aleix M. Martínez:

Spherical-Homoscedastic Distributions: The Equivalency of Spherical and Normal Distributions in Classification. 1583-1623 - Maytal Saar-Tsechansky, Foster J. Provost:

Handling Missing Values when Applying Classification Models. 1623-1657 - Marc Boullé:

Compression-Based Averaging of Selective Naive Bayes Classifiers. 1659-1685 - Jia Li, Surajit Ray, Bruce G. Lindsay:

A Nonparametric Statistical Approach to Clustering via Mode Identification. 1687-1723 - Alexander Clark, Rémi Eyraud:

Polynomial Identification in the Limit of Substitutable Context-free Languages. 1725-1745 - Ray J. Hickey:

Structure and Majority Classes in Decision Tree Learning. 1747-1768 - Natesh S. Pillai, Qiang Wu, Feng Liang, Sayan Mukherjee, Robert L. Wolpert:

Characterizing the Function Space for Bayesian Kernel Models. 1769-1797 - Gal Elidan, Iftach Nachman, Nir Friedman:

"Ideal Parent" Structure Learning for Continuous Variable Bayesian Networks. 1799-1833 - Manu Chhabra, Robert A. Jacobs, Daniel Stefankovic:

Behavioral Shaping for Geometric Concepts. 1835-1865 - Junhui Wang, Xiaotong Shen:

Large Margin Semi-supervised Learning. 1867-1891 - Simon Günter, Nicol N. Schraudolph, S. V. N. Vishwanathan:

Fast Iterative Kernel Principal Component Analysis. 1893-1918 - Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Srujana Merugu, Dharmendra S. Modha:

A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation. 1919-1986 - Vicenç Gómez, Joris M. Mooij, Hilbert J. Kappen:

Truncating the Loop Series Expansion for Belief Propagation. 1987-2016 - Aggelos Chariatis:

Very Fast Online Learning of Highly Non Linear Problems. 2017-2045 - Dima Kuzmin, Manfred K. Warmuth:

Unlabeled Compression Schemes for Maximum Classes. 2047-2081 - Yuesheng Xu, Haizhang Zhang:

Refinable Kernels. 2083-2120 - Marco Loog:

A Complete Characterization of a Family of Solutions to a Generalized Fisher Criterion. 2121-2123 - Matthew E. Taylor, Peter Stone, Yaxin Liu:

Transfer Learning via Inter-Task Mappings for Temporal Difference Learning. 2125-2167 - Sridhar Mahadevan, Mauro Maggioni:

Proto-value Functions: A Laplacian Framework for Learning Representation and Control in Markov Decision Processes. 2169-2231 - Ofer Dekel, Philip M. Long, Yoram Singer:

Online Learning of Multiple Tasks with a Shared Loss. 2233-2264 - Amir Globerson, Gal Chechik, Fernando Pereira, Naftali Tishby:

Euclidean Embedding of Co-occurrence Data. 2265-2295 - Evgeniy Gabrilovich, Shaul Markovitch:

Harnessing the Expertise of 70, 000 Human Editors: Knowledge-Based Feature Generation for Text Categorization. 2297-2345 - Peter L. Bartlett, Mikhail Traskin:

AdaBoost is Consistent. 2347-2368 - András György, Tamás Linder, Gábor Lugosi, György Ottucsák:

The On-Line Shortest Path Problem Under Partial Monitoring. 2369-2403 - Guy Lebanon, Yi Mao, Joshua V. Dillon:

The Locally Weighted Bag of Words Framework for Document Representation. 2405-2441 - Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Léon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander J. Smola, Pascal Vincent, Jason Weston, Robert C. Williamson:

The Need for Open Source Software in Machine Learning. 2443-2466 - Francesco Dinuzzo, Marta Neve, Giuseppe De Nicolao, Ugo Pietro Gianazza:

On the Representer Theorem and Equivalent Degrees of Freedom of SVR. 2467-2495 - Ping Li, Trevor Hastie, Kenneth Ward Church:

Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections. 2497-2532 - Zakria Hussain, François Laviolette, Mario Marchand, John Shawe-Taylor, S. Charles Brubaker, Matthew D. Mullin:

Revised Loss Bounds for the Set Covering Machine and Sample-Compression Loss Bounds for Imbalanced Data. 2533-2549 - Yann Guermeur:

VC Theory of Large Margin Multi-Category Classifiers. 2551-2594 - Marlon Núñez, Raúl Fidalgo, Rafael Morales Bueno:

Learning in Environments with Unknown Dynamics: Towards more Robust Concept Learners. 2595-2628 - Mohammad Ghavamzadeh, Sridhar Mahadevan:

Hierarchical Average Reward Reinforcement Learning. 2629-2669 - Stéphan Clémençon, Nicolas Vayatis:

Ranking the Best Instances. 2671-2699 - Peng Zhao, Bin Yu:

Stagewise Lasso. 2701-2726 - Carine Hue, Marc Boullé:

A New Probabilistic Approach in Rank Regression with Optimal Bayesian Partitioning. 2727-2754 - J. Zico Kolter, Marcus A. Maloof:

Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts. 2755-2790

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














