


default search action
SIAM/ASA Journal on Uncertainty Quantification, Volume 13
Volume 13, Number 1, 2025
- Joy N. Mueller
, Khachik Sargsyan
, Craig J. Daniels, Habib N. Najm
:
Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty. 1-29 - Minji Kim
, Kevin O'Connor, Vladas Pipiras, Themistoklis P. Sapsis
:
Sampling Low-Fidelity Outputs for Estimation of High-Fidelity Density and Its Tails. 30-62 - Philip Greengard
, Manas Rachh
, Alex H. Barnett:
Equispaced Fourier Representations for Efficient Gaussian Process Regression from a Billion Data Points. 63-89 - Felix Terhag
, Philipp Knechtges
, Achim Basermann
, Raúl Tempone
:
Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI. 90-113 - Vinh Hoang
, Luis Espath, Sebastian Krumscheid
, Raúl Tempone:
Scalable Method for Bayesian Experimental Design without Integrating over Posterior Distribution. 114-139 - Francesco A. B. Silva, Cecilia Pagliantini, Karen Veroy
:
An Adaptive Hierarchical Ensemble Kalman Filter with Reduced Basis Models. 140-170 - Simon Foucart, Nicolas Hengartner:
Worst-Case Learning under a Multifidelity Model. 171-194 - Devin Francom, J. Derek Tucker
, Gabriel Huerta
, Kurtis Shuler, Daniel Ries
:
Elastic Bayesian Model Calibration. 195-227 - Daria Semochkina
, Alexander I. J. Forrester, David C. Woods:
Multiobjective Optimization Using Expected Quantile Improvement for Decision Making in Disease Outbreaks. 228-250 - Didier Chauveau, Pierre Vandekerkhove:
Entropy-Based Burn-in Time Analysis and Ranking for (A)MCMC Algorithms in High Dimension. 251-277 - Nicolaï Gouraud, Pierre Le Bris, Adrien Majka, Pierre Monmarché:
HMC and Underdamped Langevin United in the Unadjusted Convex Smooth Case. 278-303 - Bamdad Hosseini
, Alexander W. Hsu, Amirhossein Taghvaei:
Conditional Optimal Transport on Function Spaces. 304-338
Volume 13, Number 2, 2025
- Jake J. Harmon
, Svetlana Tokareva, Anatoly Zlotnik, Pieter J. Swart:
Adaptive Uncertainty Quantification for Stochastic Hyperbolic Conservation Laws. 339-374 - Pieter Vanmechelen
, Geert Lombaert, Giovanni Samaey
:
Multilevel Markov Chain Monte Carlo with Likelihood Scaling for Bayesian Inversion with High-resolution Observations. 375-399 - Lea Friedli
, David Ginsbourger, Arnaud Doucet, Niklas Linde:
An Energy-Based Model Approach to Rare Event Probability Estimation. 400-424 - Denis Belomestny
, Tatiana Orlova:
Statistical Inference for Conservation Law McKean-Vlasov SDEs via Deep Neural Networks. 425-448 - Chih-Li Sung
, Yao Song, Ying Hung:
Advancing Inverse Scattering with Surrogate Modeling and Bayesian Inference for Functional Inputs. 449-471 - Xin An, Josef Dick
, Michael Feischl
, Andrea Scaglioni
, Thanh Tran
:
Sparse Grid Approximation of Nonlinear SPDEs: The Landau-Lifshitz-Gilbert Equation. 472-517 - Xiaoli Feng, Qiang Yao, Peijun Li, Xu Wang:
An Inverse Source Problem for the Stochastic Multiterm Time-Fractional Diffusion-Wave Equation. 518-542 - Mikhail Tsitsvero, Mingoo Jin, Andrey Lyalin
:
Learning Inducing Points and Uncertainty on Molecular Data by Scalable Variational Gaussian Processes. 543-562 - Massimo Aufiero, Lucas Janson:
Surrogate-Based Global Sensitivity Analysis with Statistical Guarantees via Floodgate. 563-590 - Wenzhe Xu
, Daniel B. Williamson, Frederic Hourdin, Romain Roehrig:
Feature Calibration for Computer Models. 591-612 - Alex Bespalov
, Dirk Praetorius
, Thomas Round, Andrey Savinov:
Goal-Oriented Error Estimation and Adaptivity for Stochastic Collocation FEM. 613-638 - Tan Zhang, Zhongjian Wang
, Jack Xin, Zhiwen Zhang
:
A Convergent Interacting Particle Method for Computing KPP Front Speeds in Random Flows. 639-678 - Masha Naslidnyk, Motonobu Kanagawa, Toni Karvonen, Maren Mahsereci:
Comparing Scale Parameter Estimators for Gaussian Process Interpolation with the Brownian Motion Prior: Leave-One-Out Cross Validation and Maximum Likelihood. 679-717 - Caroline Tatsuoka, Dongbin Xiu:
Deep Learning for Model Correction of Dynamical Systems with Data Scarcity. 718-743 - Ahmed Attia
, Sven Leyffer, Todd S. Munson
:
Robust A-Optimal Experimental Design for Sensor Placement in Bayesian Linear Inverse Problems. 744-774 - Fuqun Han, Stanley J. Osher
, Wuchen Li
:
Tensor Train Based Sampling Algorithms for Approximating Regularized Wasserstein Proximal Operators. 775-804 - Yuga Iguchi, Ajay Jasra
, Mohamed Maama, Alexandros Beskos
:
Antithetic Multilevel Methods for Elliptic and Hypoelliptic Diffusions with Applications. 805-830 - Dylan Green, Jonathan Lindbloom
, Anne Gelb:
Complex-Valued Signal Recovery Using a Generalized Bayesian LASSO. 831-861 - Ziyu Chen
, Markos A. Katsoulakis, Luc Rey-Bellet, Wei Zhu:
Statistical Guarantees of Group-Invariant GANs. 862-890
Volume 13, Number 3, 2025
- Sebastian W. Ertel:
On the Mean Field Theory of Ensemble Kalman Filters for SPDEs. 891-930 - Marc Dambrine
, Giulio Gargantini, Helmut Harbrecht, Jérôme Maynadier:
Shape Optimization under Constraints on the Probability of a Quadratic Functional to Exceed a Given Threshold. 931-956 - Marc Hoffmann, Camille Pouchol:
Regularization for the Approximation of Functions by Mollified Discretization Methods. 957-979 - Jingtao Zhang, Xi Chen:
Multilevel Monte Carlo Metamodeling for Variance Function Estimation. 980-1027 - René Henrion, Georg Stadler, Florian Wechsung:
Optimal Control under Uncertainty with Joint Chance State Constraints: Almost-Everywhere Bounds, Variance Reduction, and Application to (Bi)linear Elliptic PDEs. 1028-1053 - Hwanwoo Kim, Daniel Sanz-Alonso:
Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration. 1054-1084 - Jiaheng Chen, Daniel Sanz-Alonso:
Precision and Cholesky Factor Estimation for Gaussian Processes. 1085-1115 - Pu-Zhao Kow, Jenn-Nan Wang:
Consistency of Bayesian Inference for a Subdiffusion Equation. 1116-1144 - Laurence Grammont, François Bachoc, Andrés F. López-Lopera:
Error Bounds for a Kernel-Based Constrained Optimal Smoothing Approximation. 1145-1173 - Jiarui Du, Zhijian He:
Unbiased Markov Chain Quasi-Monte Carlo for Gibbs Samplers. 1174-1199 - Alex Glyn-Davies, Connor Duffin, Ieva Kazlauskaite, Mark Girolami, Ömer Deniz Akyildiz:
Statistical Finite Elements via Interacting Particle Langevin Dynamics. 1200-1227 - Philipp A. Guth, Peter Kritzer, Karl Kunisch:
Quasi-Monte Carlo Integration for Feedback Control Under Uncertainty. 1228-1264 - Lezhi Tan, Jianfeng Lu:
Accelerate Langevin Sampling with Birth-Death Process and Exploration Component. 1265-1293 - Arnulf Jentzen, Adrian Riekert:
Non-convergence to Global Minimizers for Adam and Stochastic Gradient Descent Optimization and Constructions of Local Minimizers in the Training of Artificial Neural Networks. 1294-1333 - Bangti Jin, Qimeng Quan, Wenlong Zhang:
Stochastic Convergence Analysis of the Inverse Potential Problem. 1334-1373 - Chris Chi, Jonathan Weare, Aaron R. Dinner:
Sampling Parameters of Ordinary Differential Equations with Constrained Langevin Dynamics. 1374-1405 - Promit Chakroborty, Somayajulu L. N. Dhulipala, Michael D. Shields:
Covariance-Free Bifidelity Control Variates Importance Sampling for Rare Event Reliability Analysis. 1406-1451 - Kim Batselier:
Low-dimensional Subspace Regularization through Structured Tensor Priors. 1452-1474

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.