
Frederic T. Stahl
Person information
- affiliation: University of Reading, School of Systems Engineering
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [j19]Timothée Dubuc, Frederic T. Stahl
, Etienne B. Roesch
:
Mapping the Big Data Landscape: Technologies, Platforms and Paradigms for Real-Time Analytics of Data Streams. IEEE Access 9: 15351-15374 (2021) - [j18]Frederic T. Stahl
, Thien Le, Atta Badii
, Mohamed Medhat Gaber
:
A Frequent Pattern Conjunction Heuristic for Rule Generation in Data Streams. Inf. 12(1): 24 (2021) - 2020
- [j17]Mobin M. Idrees, Leandro L. Minku
, Frederic T. Stahl
, Atta Badii:
A heterogeneous online learning ensemble for non-stationary environments. Knowl. Based Syst. 188 (2020)
2010 – 2019
- 2019
- [c33]Chris Wrench, Frederic T. Stahl, Giuseppe Di Fatta, Vidhyalakshmi Karthikeyan, Detlef D. Nauck:
A Rule Induction Approach to Forecasting Critical Alarms in a Telecommunication Network. ICDM Workshops 2019: 480-489 - 2018
- [j16]Mahmood Hammoodi, Frederic T. Stahl
, Atta Badii:
Real-time feature selection technique with concept drift detection using adaptive micro-clusters for data stream mining. Knowl. Based Syst. 161: 205-239 (2018) - [c32]Frederic Theodor Stahl:
Building Adaptive Data Mining Models on Streaming Data in Real-Time, an Outlook on Challenges, Approaches and Ongoing Research. ECMS 2018: 8-9 - [c31]Manal Almutairi, Frederic T. Stahl, Max Bramer:
A Rule-Based Classifier with Accurate and Fast Rule Term Induction for Continuous Attributes. ICMLA 2018: 413-420 - 2017
- [j15]Mark Tennant, Frederic T. Stahl
, Omer F. Rana
, João Bártolo Gomes:
Scalable real-time classification of data streams with concept drift. Future Gener. Comput. Syst. 75: 187-199 (2017) - [j14]Thien Le, Frederic T. Stahl
, Mohamed Medhat Gaber
, João Bártolo Gomes, Giuseppe Di Fatta:
On expressiveness and uncertainty awareness in rule-based classification for data streams. Neurocomputing 265: 127-141 (2017) - [c30]Manal Almutairi, Frederic T. Stahl, Max Bramer:
Improving Modular Classification Rule Induction with G-Prism Using Dynamic Rule Term Boundaries. SGAI Conf. 2017: 115-128 - 2016
- [j13]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber
, Carlos J. Martín-Dancausa, Frederic T. Stahl
, João Bártolo Gomes:
A rule dynamics approach to event detection in Twitter with its application to sports and politics. Expert Syst. Appl. 55: 351-360 (2016) - [c29]Mahmood Hammoodi, Frederic T. Stahl, Mark Tennant:
Towards Online Concept Drift Detection with Feature Selection for Data Stream Classification. ECAI 2016: 1549-1550 - [c28]Thien Le, Frederic T. Stahl, Chris Wrench, Mohamed Medhat Gaber
:
A Statistical Learning Method to Fast Generalised Rule Induction Directly from Raw Measurements. ICMLA 2016: 935-938 - [c27]Manal Almutairi, Frederic T. Stahl, Mathew Jennings, Thien Le, Max Bramer:
Towards Expressive Modular Rule Induction for Numerical Attributes. SGAI Conf. 2016: 229-235 - [c26]Chris Wrench, Frederic T. Stahl, Thien Le, Giuseppe Di Fatta, Vidhyalakshmi Karthikeyan, Detlef D. Nauck:
A Method of Rule Induction for Predicting and Describing Future Alarms in a Telecommunication Network. SGAI Conf. 2016: 309-323 - 2015
- [j12]Indre Zliobaite
, Marcin Budka, Frederic T. Stahl
:
Towards cost-sensitive adaptation: When is it worth updating your predictive model? Neurocomputing 150: 240-249 (2015) - [j11]Frederic T. Stahl, David May, Hugo Mills, Max Bramer, Mohamed Medhat Gaber
:
A Scalable Expressive Ensemble Learning Using Random Prism: A MapReduce Approach. Trans. Large Scale Data Knowl. Centered Syst. 20: 90-107 (2015) - [c25]Sami Al Ghamdi, Giuseppe Di Fatta
, Frederic T. Stahl:
Optimisation Techniques for Parallel K-Means on MapReduce. IDCS 2015: 193-200 - [c24]Mark Tennant, Frederic T. Stahl, João Bártolo Gomes:
Fast Adaptive Real-Time Classification for Data Streams with Concept Drift. IDCS 2015: 265-272 - [c23]Chris Wrench, Frederic T. Stahl, Giuseppe Di Fatta, Vidhyalakshmi Karthikeyan, Detlef D. Nauck:
Towards Expressive Rule Induction on IP Network Event Streams. SGAI Conf. 2015: 191-196 - [e1]Giuseppe Di Fatta
, Giancarlo Fortino
, Wenfeng Li, Mukaddim Pathan, Frederic T. Stahl, Antonio Guerrieri
:
Internet and Distributed Computing Systems - 8th International Conference, IDCS 2015, Windsor, UK, September 2-4, 2015. Proceedings. Lecture Notes in Computer Science 9258, Springer 2015, ISBN 978-3-319-23236-2 [contents] - 2014
- [j10]Frederic T. Stahl
, Max Bramer:
Random Prism: a noise-tolerant alternative to Random Forests. Expert Syst. J. Knowl. Eng. 31(5): 411-420 (2014) - [j9]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic T. Stahl:
A Survey of Data Mining Techniques for Social Media Analysis. J. Data Min. Digit. Humanit. 2014 (2014) - [j8]Mohamed Medhat Gaber
, João Gama
, Shonali Krishnaswamy, João Bártolo Gomes, Frederic T. Stahl
:
Data stream mining in ubiquitous environments: state-of-the-art and current directions. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4(2): 116-138 (2014) - [c22]Han Liu, Alexander E. Gegov, Frederic T. Stahl:
Categorization and Construction of Rule Based Systems. EANN 2014: 183-194 - [c21]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber
, Carlos J. Martín-Dancausa, Frederic T. Stahl:
Extraction of Unexpected Rules from Twitter Hashtags and its Application to Sport Events. ICMLA 2014: 207-212 - [c20]Thien Le, Frederic T. Stahl, João Bártolo Gomes, Mohamed Medhat Gaber, Giuseppe Di Fatta:
Computationally Efficient Rule-Based Classification for Continuous Streaming Data. SGAI Conf. 2014: 21-34 - [c19]Mark Tennant, Frederic T. Stahl, Giuseppe Di Fatta, João Bártolo Gomes:
Towards a Parallel Computationally Efficient Approach to Scaling Up Data Stream Classification. SGAI Conf. 2014: 51-65 - 2013
- [j7]Frederic T. Stahl
, Max Bramer:
Scaling up classification rule induction through parallel processing. Knowl. Eng. Rev. 28(4): 451-478 (2013) - [j6]Frederic T. Stahl
, Bogdan Gabrys, Mohamed Medhat Gaber
, Monika Berendsen:
An overview of interactive visual data mining techniques for knowledge discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(4): 239-256 (2013) - [c18]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber
, Frederic T. Stahl:
TRCM: A Methodology for Temporal Analysis of Evolving Concepts in Twitter. ICAISC (2) 2013: 135-145 - [c17]João Bártolo Gomes, Mariam Adedoyin-Olowe, Mohamed Medhat Gaber
, Frederic T. Stahl:
Rule Type Identification Using TRCM for Trend Analysis in Twitter. SGAI Conf. 2013: 273-278 - [c16]Peter Rausch, Frederic T. Stahl, Michael Stumpf:
Efficient Interactive Budget Planning and Adjusting Under Financial Stress. SGAI Conf. 2013: 375-388 - [i1]Mariam Adedoyin-Olowe, Mohamed Medhat Gaber
, Frederic T. Stahl:
A Survey of Data Mining Techniques for Social Media Analysis. CoRR abs/1312.4617 (2013) - 2012
- [j5]Frederic T. Stahl
, Max Bramer:
Jmax-pruning: A facility for the information theoretic pruning of modular classification rules. Knowl. Based Syst. 29: 12-19 (2012) - [j4]Frederic T. Stahl
, Max Bramer:
Computationally efficient induction of classification rules with the PMCRI and J-PMCRI frameworks. Knowl. Based Syst. 35: 49-63 (2012) - [j3]Frederic T. Stahl, Mohamed Medhat Gaber
, Paul Aldridge, David May, Han Liu, Max Bramer, Philip S. Yu:
Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining. Trans. Large Scale Data Knowl. Centered Syst. 5: 183-205 (2012) - [j2]Frederic T. Stahl
, Ivan Jordanov:
An overview of the use of neural networks for data mining tasks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(3): 193-208 (2012) - [c15]Frederic T. Stahl, David May, Max Bramer:
Parallel Random Prism: A Computationally Efficient Ensemble Learner for Classification. SGAI Conf. 2012: 21-34 - [c14]Frederic T. Stahl, Mohamed Medhat Gaber
, Manuel Martin Salvador:
eRules: A Modular Adaptive Classification Rule Learning Algorithm for Data Streams. SGAI Conf. 2012: 65-78 - 2011
- [c13]Frederic T. Stahl
, Mohamed Medhat Gaber
, Max Bramer, Philip S. Yu:
Distributed hoeffding trees for pocket data mining. HPCS 2011: 686-692 - [c12]Frederic T. Stahl, Mohamed Medhat Gaber
, Han Liu, Max Bramer, Philip S. Yu:
Distributed Classification for Pocket Data Mining. ISMIS 2011: 336-345 - [c11]Frederic T. Stahl, Max Bramer:
Random Prism: An Alternative to Random Forests. SGAI Conf. 2011: 5-18 - 2010
- [j1]Martin T. Swain, Cândida G. Silva
, Nuno Loureiro-Ferreira, Vitaliy Ostropytskyy, João Brito, Olivier Riche, Frederic T. Stahl
, Werner Dubitzky, Rui M. M. Brito
:
P-found: Grid-enabling distributed repositories of protein folding and unfolding simulations for data mining. Future Gener. Comput. Syst. 26(3): 424-433 (2010) - [c10]Frederic T. Stahl
, Mohamed Medhat Gaber
, Max Bramer, Philip S. Yu:
Pocket Data Mining: Towards Collaborative Data Mining in Mobile Computing Environments. ICTAI (2) 2010: 323-330 - [c9]Frederic T. Stahl, Max Bramer, Mo Adda:
J-PMCRI: A Methodology for Inducing Pre-pruned Modular Classification Rules. IFIP AI 2010: 47-56 - [c8]Frederic T. Stahl, Max Bramer:
Induction of Modular Classification Rules: Using Jmax-pruning. SGAI Conf. 2010: 79-92
2000 – 2009
- 2009
- [b1]Frederic Theodor Stahl:
Parallel rule induction. University of Portsmouth, UK, 2009 - [c7]Frederic T. Stahl, Max A. Bramer, Mo Adda:
PMCRI: A Parallel Modular Classification Rule Induction Framework. MLDM 2009: 148-162 - [c6]Frederic T. Stahl, Max Bramer, Mo Adda
:
Parallel Rule Induction with Information Theoretic Pre-Pruning. SGAI Conf. 2009: 151-164 - 2008
- [c5]Martin T. Swain, Vitaliy Ostropytskyy, Cândida G. Silva
, Frederic T. Stahl, Olivier Riche, Rui M. M. Brito
, Werner Dubitzky:
Grid Computing Solutions for Distributed Repositories of Protein Folding and Unfolding Simulations. ICCS (3) 2008: 70-79 - [c4]Frederic T. Stahl, Max A. Bramer, Mo Adda:
P-Prism: A Computationally Efficient Approach to Scaling up Classification Rule Induction. IFIP AI 2008: 77-86 - [c3]Frederic T. Stahl, Max Bramer, Mo Adda:
Parallel Induction of Modular Classification Rules. SGAI Conf. 2008: 343-348 - 2007
- [c2]Frederic T. Stahl, Max Bramer:
Towards a Computationally Efficient Approach to Modular Classification Rule Induction. SGAI Conf. 2007: 357-362 - 2005
- [c1]Frederic T. Stahl
, Daniel P. Berrar, Cândida G. Silva
, R. J. Rodrigues
, Rui M. M. Brito
, Werner Dubitzky:
Grid warehousing of molecular dynamics protein unfolding data. CCGRID 2005: 496-503
Coauthor Index
aka: Max A. Bramer

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-04-08 11:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint