default search action
Pierre-Luc Bacon
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c28]Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, Pierre-Luc Bacon:
Maximum entropy GFlowNets with soft Q-learning. AISTATS 2024: 2593-2601 - [c27]Mahan Fathi, Clement Gehring, Jonathan Pilault, David Kanaa, Pierre-Luc Bacon, Ross Goroshin:
Course Correcting Koopman Representations. ICLR 2024 - [c26]Martin Klissarov, Pierluca D'Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal Vincent, Amy Zhang, Mikael Henaff:
Motif: Intrinsic Motivation from Artificial Intelligence Feedback. ICLR 2024 - [c25]Sobhan Mohammadpour, Emma Frejinger, Pierre-Luc Bacon:
Decoupling regularization from the action space. ICLR 2024 - [c24]Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Mahajan, Pierre-Luc Bacon:
Bridging State and History Representations: Understanding Self-Predictive RL. ICLR 2024 - [c23]Michel Ma, Tianwei Ni, Clement Gehring, Pierluca D'Oro, Pierre-Luc Bacon:
Do Transformer World Models Give Better Policy Gradients? ICML 2024 - [i39]Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Mahajan, Pierre-Luc Bacon:
Bridging State and History Representations: Understanding Self-Predictive RL. CoRR abs/2401.08898 (2024) - [i38]Michel Ma, Tianwei Ni, Clement Gehring, Pierluca D'Oro, Pierre-Luc Bacon:
Do Transformer World Models Give Better Policy Gradients? CoRR abs/2402.05290 (2024) - [i37]Simon Dufort-Labbé, Pierluca D'Oro, Evgenii Nikishin, Razvan Pascanu, Pierre-Luc Bacon, Aristide Baratin:
Maxwell's Demon at Work: Efficient Pruning by Leveraging Saturation of Neurons. CoRR abs/2403.07688 (2024) - [i36]Maksym Korablyov, Cheng-Hao Liu, Moksh Jain, Almer M. van der Sloot, Eric Jolicoeur, Edward Ruediger, Andrei Cristian Nica, Emmanuel Bengio, Kostiantyn Lapchevskyi, Daniel St-Cyr, Doris Alexandra Schuetz, Victor Ion Butoi, Jarrid Rector-Brooks, Simon Blackburn, Leo Feng, Hadi Nekoei, Sai Krishna Gottipati, Priyesh Vijayan, Prateek Gupta, Ladislav Rampásek, Sasikanth Avancha, Pierre-Luc Bacon, William L. Hamilton, Brooks Paige, Sanchit Misra, Stanislaw Kamil Jastrzebski, Bharat Kaul, Doina Precup, José Miguel Hernández-Lobato, Marwin H. S. Segler, Michael M. Bronstein, Anne Marinier, Mike Tyers, Yoshua Bengio:
Generative Active Learning for the Search of Small-molecule Protein Binders. CoRR abs/2405.01616 (2024) - [i35]Sobhan Mohammadpour, Emma Frejinger, Pierre-Luc Bacon:
Decoupling regularization from the action space. CoRR abs/2406.05953 (2024) - [i34]Nikolaus H. R. Howe, Michal Zajac, Ian R. McKenzie, Oskar Hollinsworth, Tom Tseng, Pierre-Luc Bacon, Adam Gleave:
Exploring Scaling Trends in LLM Robustness. CoRR abs/2407.18213 (2024) - 2023
- [c22]Pierluca D'Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, Aaron C. Courville:
Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. ICLR 2023 - [c21]David Yu-Tung Hui, Aaron C. Courville, Pierre-Luc Bacon:
Double Gumbel Q-Learning. NeurIPS 2023 - [c20]Tianwei Ni, Michel Ma, Benjamin Eysenbach, Pierre-Luc Bacon:
When Do Transformers Shine in RL? Decoupling Memory from Credit Assignment. NeurIPS 2023 - [c19]Jonathan Pilault, Mahan Fathi, Orhan Firat, Chris Pal, Pierre-Luc Bacon, Ross Goroshin:
Block-State Transformers. NeurIPS 2023 - [c18]Nate Rahn, Pierluca D'Oro, Harley Wiltzer, Pierre-Luc Bacon, Marc G. Bellemare:
Policy Optimization in a Noisy Neighborhood: On Return Landscapes in Continuous Control. NeurIPS 2023 - [i33]Julien Roy, Pierre-Luc Bacon, Christopher Pal, Emmanuel Bengio:
Goal-conditioned GFlowNets for Controllable Multi-Objective Molecular Design. CoRR abs/2306.04620 (2023) - [i32]Mahan Fathi, Jonathan Pilault, Pierre-Luc Bacon, Christopher Pal, Orhan Firat, Ross Goroshin:
Block-State Transformer. CoRR abs/2306.09539 (2023) - [i31]Tianwei Ni, Michel Ma, Benjamin Eysenbach, Pierre-Luc Bacon:
When Do Transformers Shine in RL? Decoupling Memory from Credit Assignment. CoRR abs/2307.03864 (2023) - [i30]Nate Rahn, Pierluca D'Oro, Harley Wiltzer, Pierre-Luc Bacon, Marc G. Bellemare:
Policy Optimization in a Noisy Neighborhood: On Return Landscapes in Continuous Control. CoRR abs/2309.14597 (2023) - [i29]Martin Klissarov, Pierluca D'Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal Vincent, Amy Zhang, Mikael Henaff:
Motif: Intrinsic Motivation from Artificial Intelligence Feedback. CoRR abs/2310.00166 (2023) - [i28]Mahan Fathi, Clement Gehring, Jonathan Pilault, David Kanaa, Pierre-Luc Bacon, Ross Goroshin:
Course Correcting Koopman Representations. CoRR abs/2310.15386 (2023) - [i27]Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, Pierre-Luc Bacon:
Maximum entropy GFlowNets with soft Q-learning. CoRR abs/2312.14331 (2023) - 2022
- [c17]Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, Pierre-Luc Bacon:
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation. AAAI 2022: 7886-7894 - [c16]Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon:
Continuous-Time Meta-Learning with Forward Mode Differentiation. ICLR 2022 - [c15]Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron C. Courville:
The Primacy Bias in Deep Reinforcement Learning. ICML 2022: 16828-16847 - [c14]Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, Christopher J. Pal:
Direct Behavior Specification via Constrained Reinforcement Learning. ICML 2022: 18828-18843 - [c13]Nikolaus H. R. Howe, Simon Dufort-Labbé, Nitarshan Rajkumar, Pierre-Luc Bacon:
Myriad: a real-world testbed to bridge trajectory optimization and deep learning. NeurIPS 2022 - [i26]Nikolaus H. R. Howe, Simon Dufort-Labbé, Nitarshan Rajkumar, Pierre-Luc Bacon:
Myriad: a real-world testbed to bridge trajectory optimization and deep learning. CoRR abs/2202.10600 (2022) - [i25]Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon:
Continuous-Time Meta-Learning with Forward Mode Differentiation. CoRR abs/2203.01443 (2022) - [i24]Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron C. Courville:
The Primacy Bias in Deep Reinforcement Learning. CoRR abs/2205.07802 (2022) - [i23]Leo Feng, Padideh Nouri, Aneri Muni, Yoshua Bengio, Pierre-Luc Bacon:
Designing Biological Sequences via Meta-Reinforcement Learning and Bayesian Optimization. CoRR abs/2209.06259 (2022) - 2021
- [c12]Joshua Romoff, Peter Henderson, David Kanaa, Emmanuel Bengio, Ahmed Touati, Pierre-Luc Bacon, Joelle Pineau:
TDprop: Does Adaptive Optimization With Jacobi Preconditioning Help Temporal Difference Learning? AAMAS 2021: 1082-1090 - [c11]Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic:
Neural Algorithmic Reasoners are Implicit Planners. NeurIPS 2021: 15529-15542 - [i22]Dilip Arumugam, Peter Henderson, Pierre-Luc Bacon:
An Information-Theoretic Perspective on Credit Assignment in Reinforcement Learning. CoRR abs/2103.06224 (2021) - [i21]Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, Pierre-Luc Bacon:
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation. CoRR abs/2106.03273 (2021) - [i20]Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic:
Neural Algorithmic Reasoners are Implicit Planners. CoRR abs/2110.05442 (2021) - [i19]Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, Christopher J. Pal:
Direct Behavior Specification via Constrained Reinforcement Learning. CoRR abs/2112.12228 (2021) - 2020
- [c10]Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon, Doina Precup:
Options of Interest: Temporal Abstraction with Interest Functions. AAAI 2020: 4444-4451 - [c9]Yao Liu, Pierre-Luc Bacon, Emma Brunskill:
Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling. ICML 2020: 6184-6193 - [i18]Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon, Doina Precup:
Options of Interest: Temporal Abstraction with Interest Functions. CoRR abs/2001.00271 (2020) - [i17]Jean Harb, Tom Schaul, Doina Precup, Pierre-Luc Bacon:
Policy Evaluation Networks. CoRR abs/2002.11833 (2020) - [i16]Joshua Romoff, Peter Henderson, David Kanaa, Emmanuel Bengio, Ahmed Touati, Pierre-Luc Bacon, Joelle Pineau:
TDprop: Does Jacobi Preconditioning Help Temporal Difference Learning? CoRR abs/2007.02786 (2020) - [i15]Andreea Deac, Pierre-Luc Bacon, Jian Tang:
Graph neural induction of value iteration. CoRR abs/2009.12604 (2020) - [i14]Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic:
XLVIN: eXecuted Latent Value Iteration Nets. CoRR abs/2010.13146 (2020)
2010 – 2019
- 2019
- [i13]Yao Liu, Pierre-Luc Bacon, Emma Brunskill:
Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling. CoRR abs/1910.06508 (2019) - [i12]Benjamin Petit, Loren Amdahl-Culleton, Yao Liu, Jimmy Smith, Pierre-Luc Bacon:
All-Action Policy Gradient Methods: A Numerical Integration Approach. CoRR abs/1910.09093 (2019) - [i11]Riashat Islam, Raihan Seraj, Pierre-Luc Bacon, Doina Precup:
Entropy Regularization with Discounted Future State Distribution in Policy Gradient Methods. CoRR abs/1912.05104 (2019) - 2018
- [j1]Pierre-Luc Bacon, Doina Precup:
Constructing Temporal Abstractions Autonomously in Reinforcement Learning. AI Mag. 39(1): 39-50 (2018) - [c8]Jean Harb, Pierre-Luc Bacon, Martin Klissarov, Doina Precup:
When Waiting Is Not an Option: Learning Options With a Deliberation Cost. AAAI 2018: 3165-3172 - [c7]Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, Ann Nowé:
Learning With Options That Terminate Off-Policy. AAAI 2018: 3173-3182 - [c6]Peter Henderson, Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau, Doina Precup:
OptionGAN: Learning Joint Reward-Policy Options Using Generative Adversarial Inverse Reinforcement Learning. AAAI 2018: 3199-3206 - [c5]Daniel J. Mankowitz, Timothy A. Mann, Pierre-Luc Bacon, Doina Precup, Shie Mannor:
Learning Robust Options. AAAI 2018: 6409-6416 - [c4]Ahmed Touati, Pierre-Luc Bacon, Doina Precup, Pascal Vincent:
Convergent TREE BACKUP and RETRACE with Function Approximation. ICML 2018: 4962-4971 - [i10]Daniel J. Mankowitz, Timothy A. Mann, Pierre-Luc Bacon, Doina Precup, Shie Mannor:
Learning Robust Options. CoRR abs/1802.03236 (2018) - [i9]Tom Schaul, Hado van Hasselt, Joseph Modayil, Martha White, Adam White, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Marc G. Bellemare, Doina Precup:
The Barbados 2018 List of Open Issues in Continual Learning. CoRR abs/1811.07004 (2018) - 2017
- [c3]Pierre-Luc Bacon, Jean Harb, Doina Precup:
The Option-Critic Architecture. AAAI 2017: 1726-1734 - [i8]Ahmed Touati, Pierre-Luc Bacon, Doina Precup, Pascal Vincent:
Convergent Tree-Backup and Retrace with Function Approximation. CoRR abs/1705.09322 (2017) - [i7]Jean Harb, Pierre-Luc Bacon, Martin Klissarov, Doina Precup:
When Waiting is not an Option : Learning Options with a Deliberation Cost. CoRR abs/1709.04571 (2017) - [i6]Peter Henderson, Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau, Doina Precup:
OptionGAN: Learning Joint Reward-Policy Options using Generative Adversarial Inverse Reinforcement Learning. CoRR abs/1709.06683 (2017) - [i5]Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, Ann Nowé:
Learning with Options that Terminate Off-Policy. CoRR abs/1711.03817 (2017) - [i4]Martin Klissarov, Pierre-Luc Bacon, Jean Harb, Doina Precup:
Learnings Options End-to-End for Continuous Action Tasks. CoRR abs/1712.00004 (2017) - 2016
- [i3]Pierre-Luc Bacon, Jean Harb, Doina Precup:
The Option-Critic Architecture. CoRR abs/1609.05140 (2016) - [i2]Pierre-Luc Bacon, Doina Precup:
A Matrix Splitting Perspective on Planning with Options. CoRR abs/1612.00916 (2016) - 2015
- [c2]Joelle Pineau, Pierre-Luc Bacon:
Analyzing Open Data from the City of Montreal. MUD@ICML 2015: 11-16 - [c1]Pierre-Luc Bacon, Borja Balle, Doina Precup:
Learning and Planning with Timing Information in Markov Decision Processes. UAI 2015: 111-120 - [i1]Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, Doina Precup:
Conditional Computation in Neural Networks for faster models. CoRR abs/1511.06297 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:23 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint