


default search action
27th AISTATS 2024: Valencia, Spain
- Sanjoy Dasgupta, Stephan Mandt, Yingzhen Li:

International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research 238, PMLR 2024 - David Rügamer:

Scalable Higher-Order Tensor Product Spline Models. 1-9 - Daichi Amagata:

Fair k-center Clustering with Outliers. 10-18 - Shiv Shankar, Ritwik Sinha, Yash Chandak, Saayan Mitra, Madalina Fiterau:

A/B testing under Interference with Partial Network Information. 19-27 - Taeuk Jang, Hongchang Gao, Pengyi Shi, Xiaoqian Wang:

Achieving Fairness through Separability: A Unified Framework for Fair Representation Learning. 28-36 - Wenjie Li, Qifan Song, Jean Honorio:

Personalized Federated X-armed Bandit. 37-45 - Zhishuai Li, Yunhao Nie, Ziyue Li, Lei Bai, Yisheng Lv, Rui Zhao:

Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical Learning. 46-54 - Davin Hill, Aria Masoomi, Max Torop, Sandesh Ghimire, Jennifer G. Dy:

Boundary-Aware Uncertainty for Feature Attribution Explainers. 55-63 - Mathieu Even, Anastasia Koloskova, Laurent Massoulié:

Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization. 64-72 - Fredrik Hellström, Benjamin Guedj:

Comparing Comparators in Generalization Bounds. 73-81 - Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, Pierre Ablin:

A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization. 82-90 - Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun:

Better Batch for Deep Probabilistic Time Series Forecasting. 91-99 - Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic:

Distributionally Robust Model-based Reinforcement Learning with Large State Spaces. 100-108 - Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d'Alché-Buc:

Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels. 109-117 - Nelson Vadori, Rahul Savani:

Ordinal Potential-based Player Rating. 118-126 - Tim G. J. Rudner, Ya Shi Zhang, Andrew Gordon Wilson, Julia Kempe:

Mind the GAP: Improving Robustness to Subpopulation Shifts with Group-Aware Priors. 127-135 - Amanda M. Buch, Conor Liston, Logan Grosenick:

Simple and scalable algorithms for cluster-aware precision medicine. 136-144 - Tianyi Lin, Marco Cuturi, Michael I. Jordan:

A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport. 145-153 - Haoyue Dai, Ignavier Ng, Yujia Zheng, Zhengqing Gao, Kun Zhang:

Local Causal Discovery with Linear non-Gaussian Cyclic Models. 154-162 - Yookoon Park, David M. Blei:

Density Uncertainty Layers for Reliable Uncertainty Estimation. 163-171 - Florence Carton, Robin Louiset, Pietro Gori:

Double InfoGAN for Contrastive Analysis. 172-180 - Jean Feng, Alexej Gossmann, Romain Pirracchio, Nicholas Petrick, Gene Pennello, Berkman Sahiner:

Is this model reliable for everyone? Testing for strong calibration. 181-189 - Nicolai Palm, Thomas Nagler

:
An Online Bootstrap for Time Series. 190-198 - Yue Xing, Xiaofeng Lin, Qifan Song, Yi Xu, Belinda Zeng, Guang Cheng:

Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective. 199-207 - Zhao Song, Junze Yin, Lichen Zhang:

Solving Attention Kernel Regression Problem via Pre-conditioner. 208-216 - Hanjiang Hu, Zuxin Liu, Linyi Li, Jiacheng Zhu, Ding Zhao:

Pixel-wise Smoothing for Certified Robustness against Camera Motion Perturbations. 217-225 - Viktor Bengs, Björn Haddenhorst, Eyke Hüllermeier:

Identifying Copeland Winners in Dueling Bandits with Indifferences. 226-234 - Kyurae Kim, Yi-An Ma, Jacob R. Gardner:

Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing? 235-243 - Zhao Song, Junze Yin, Lichen Zhang, Ruizhe Zhang:

Fast Dynamic Sampling for Determinantal Point Processes. 244-252 - Zitian Li, Wang Chi Cheung:

Best Arm Identification with Resource Constraints. 253-261 - Haoming Yang, Ali Hasan, Yuting Ng, Vahid Tarokh:

Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion Processes. 262-270 - Zhenyu Zhang, JiuDong Yang:

HintMiner: Automatic Question Hints Mining From Q&A Web Posts with Language Model via Self-Supervised Learning. 271-279 - Kihyuk Hong, Yuhang Li, Ambuj Tewari:

A Primal-Dual-Critic Algorithm for Offline Constrained Reinforcement Learning. 280-288 - Jiawei Huang, Batuhan Yardim, Niao He:

On the Statistical Efficiency of Mean-Field Reinforcement Learning with General Function Approximation. 289-297 - Pinar Demetci, Quang Huy Tran, Ievgen Redko, Ritambhara Singh:

Breaking isometric ties and introducing priors in Gromov-Wasserstein distances. 298-306 - Momin Abbas, Yi Zhou, Parikshit Ram, Nathalie Baracaldo, Horst Samulowitz, Theodoros Salonidis, Tianyi Chen:

Enhancing In-context Learning via Linear Probe Calibration. 307-315 - Meixia Lin, Yangjing Zhang:

DNNLasso: Scalable Graph Learning for Matrix-Variate Data. 316-324 - Guillaume Houry, Han Bao, Han Zhao, Makoto Yamada:

Fast 1-Wasserstein distance approximations using greedy strategies. 325-333 - Emil Carlsson, Debabrota Basu, Fredrik D. Johansson, Devdatt P. Dubhashi:

Pure Exploration in Bandits with Linear Constraints. 334-342 - Sarah Dean, Mihaela Curmei, Lillian J. Ratliff, Jamie Morgenstern, Maryam Fazel:

Emergent specialization from participation dynamics and multi-learner retraining. 343-351 - Rui Zhang, Rui Xin, Margo I. Seltzer, Cynthia Rudin:

Optimal Sparse Survival Trees. 352-360 - Chen Li, Yoshihiro Yamanishi:

TenGAN: Pure Transformer Encoders Make an Efficient Discrete GAN for De Novo Molecular Generation. 361-369 - Yuya Yoshikawa, Tomoharu Iwata:

Explanation-based Training with Differentiable Insertion/Deletion Metric-aware Regularizers. 370-378 - Dorian Baudry, Nadav Merlis, Mathieu Benjamin Molina, Hugo Richard, Vianney Perchet:

Multi-armed bandits with guaranteed revenue per arm. 379-387 - Hugo Richard, Etienne Boursier

, Vianney Perchet:
Constant or Logarithmic Regret in Asynchronous Multiplayer Bandits with Limited Communication. 388-396 - Rafael Savvides, Hoang Phuc Hau Luu, Kai Puolamäki:

Error bounds for any regression model using Gaussian processes with gradient information. 397-405 - Felip Guimerà Cuevas, Helmut Schmid:

Robust Non-linear Normalization of Heterogeneous Feature Distributions with Adaptive Tanh-Estimators. 406-414 - Dongxia Wu, Tsuyoshi Idé, Georgios Kollias, Jirí Navrátil, Aurélie C. Lozano, Naoki Abe, Yi-An Ma, Rose Yu:

Learning Granger Causality from Instance-wise Self-attentive Hawkes Processes. 415-423 - Andrew R. Hands, Tianyi Sun, Risi Kondor:

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks. 424-432 - Aadirupa Saha, Vitaly Feldman, Yishay Mansour, Tomer Koren:

Faster Convergence with MultiWay Preferences. 433-441 - Yanxiang Gong, Zhiwei Xie, Mei Xie, Xin Ma:

Testing Generated Distributions in GANs to Penalize Mode Collapse. 442-450 - Vivien A Cabannnes, Francis Bach:

The Galerkin method beats Graph-Based Approaches for Spectral Algorithms. 451-459 - Jin Sima, Changlong Wu, Olgica Milenkovic, Wojciech Szpankowski:

Online Distribution Learning with Local Privacy Constraints. 460-468 - Hyeok Kyu Kwon, Minwoo Chae:

Minimax optimal density estimation using a shallow generative model with a one-dimensional latent variable. 469-477 - Nivasini Ananthakrishnan, Stephen Bates, Michael I. Jordan, Nika Haghtalab:

Delegating Data Collection in Decentralized Machine Learning. 478-486 - Berivan Isik, Francesco Pase, Deniz Gündüz, Sanmi Koyejo, Tsachy Weissman, Michele Zorzi:

Adaptive Compression in Federated Learning via Side Information. 487-495 - Masaki Adachi

, Satoshi Hayakawa, Martin Jørgensen, Xingchen Wan, Vu Nguyen, Harald Oberhauser, Michael A. Osborne:
Adaptive Batch Sizes for Active Learning: A Probabilistic Numerics Approach. 496-504 - Masaki Adachi

, Brady Planden, David A. Howey, Michael A. Osborne, Sebastian Orbell, Natalia Ares, Krikamol Muandet, Siu Lun Chau:
Looping in the Human: Collaborative and Explainable Bayesian Optimization. 505-513 - Sagnik Chatterjee, SAPV Tharrmashastha, Debajyoti Bera:

Efficient Quantum Agnostic Improper Learning of Decision Trees. 514-522 - Steven Bilaj, Sofien Dhouib, Setareh Maghsudi:

Meta Learning in Bandits within shared affine Subspaces. 523-531 - Guillaume Braun, Masashi Sugiyama:

VEC-SBM: Optimal Community Detection with Vectorial Edges Covariates. 532-540 - Jin Zhu, Runzhe Wan, Zhengling Qi, Shikai Luo, Chengchun Shi:

Robust Offline Reinforcement Learning with Heavy-Tailed Rewards. 541-549 - Hidde Fokkema, Damien Garreau, Tim van Erven:

The Risks of Recourse in Binary Classification. 550-558 - Yingru Li, Zhi-Quan Luo:

Prior-dependent analysis of posterior sampling reinforcement learning with function approximation. 559-567 - Mina Dalirrooyfard, Elaheh Fata, Majid Behbahani, Yuriy Nevmyvaka:

Graph Partitioning with a Move Budget. 568-576 - Myrto Limnios, Stéphan Clémençon:

On Ranking-based Tests of Independence. 577-585 - Othmane Sebbouh, Marco Cuturi, Gabriel Peyré:

Structured Transforms Across Spaces with Cost-Regularized Optimal Transport. 586-594 - Ambroise Odonnat, Vasilii Feofanov, Ievgen Redko:

Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias. 595-603 - Shubham Gupta, Peter W. J. Staar, Christian de Sainte Marie:

Clustering Items From Adaptively Collected Inconsistent Feedback. 604-612 - Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut:

Compression with Exact Error Distribution for Federated Learning. 613-621 - Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar:

Deep anytime-valid hypothesis testing. 622-630 - Ethan Blaser, Chuanhao Li, Hongning Wang:

Federated Linear Contextual Bandits with Heterogeneous Clients. 631-639 - Phi Vu Tran:

LEDetection: A Simple Framework for Semi-Supervised Few-Shot Object Detection. 640-648 - Rustem Islamov, Mher Safaryan, Dan Alistarh:

AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms. 649-657 - Spencer Hutchinson

, Berkay Turan, Mahnoosh Alizadeh:
Directional Optimism for Safe Linear Bandits. 658-666 - Zijun Cui, Hanjing Wang, Tian Gao, Kartik Talamadupula, Qiang Ji:

Theory-guided Message Passing Neural Network for Probabilistic Inference. 667-675 - Zhenyu Sun, Xiaochun Niu, Ermin Wei:

Understanding Generalization of Federated Learning via Stability: Heterogeneity Matters. 676-684 - Yingcong Li, Yixiao Huang

, Muhammed Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak:
Mechanics of Next Token Prediction with Self-Attention. 685-693 - Siqi Zhang, Yifan Hu, Liang Zhang, Niao He:

Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic Minimax Optimization. 694-702 - Zelin He, Ying Sun, Runze Li:

TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression. 703-711 - Daiqi Gao, Yuanjia Wang, Donglin Zeng:

Fusing Individualized Treatment Rules Using Secondary Outcomes. 712-720 - David Janz, Shuai Liu, Alex Ayoub, Csaba Szepesvári:

Exploration via linearly perturbed loss minimisation. 721-729 - Jizhou Liu, Eric Tchetgen Tchetgen, Carlos Varjão:

Proximal Causal Inference for Synthetic Control with Surrogates. 730-738 - Martin Jankowiak, Du Phan:

Reparameterized Variational Rejection Sampling. 739-747 - Thuan Anh Trang, Nhat Khang Ngo, Daniel T. Levy, Ngoc Thieu Vo, Siamak Ravanbakhsh, Truong Son Hy:

E(3)-Equivariant Mesh Neural Networks. 748-756 - Lianke Qin, Zhao Song, Ruizhe Zhang:

A General Algorithm for Solving Rank-one Matrix Sensing. 757-765 - Lequn Wang, Akshay Krishnamurthy, Alex Slivkins:

Oracle-Efficient Pessimism: Offline Policy Optimization In Contextual Bandits. 766-774 - Xavier Dupuis, Patrick Tardivel:

The Solution Path of SLOPE. 775-783 - He Chen, Haochen Xu, Rujun Jiang, Anthony Man-Cho So:

Lower-level Duality Based Reformulation and Majorization Minimization Algorithm for Hyperparameter Optimization. 784-792 - Pavan Karjol, Rohan Kashyap, Aditya Gopalan, A. P. Prathosh:

A Unified Framework for Discovering Discrete Symmetries. 793-801 - Chen Amiraz, Robert Krauthgamer, Boaz Nadler:

Recovery Guarantees for Distributed-OMP. 802-810 - Matteo Vilucchio

, Emanuele Troiani, Vittorio Erba, Florent Krzakala:
Asymptotic Characterisation of the Performance of Robust Linear Regression in the Presence of Outliers. 811-819 - Hanlin Yu, Marcelo Hartmann, Bernardo Williams Moreno Sanchez, Mark Girolami, Arto Klami:

Riemannian Laplace Approximation with the Fisher Metric. 820-828 - Tim Reichelt, Luke Ong, Tom Rainforth:

Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support. 829-837 - Anass Aghbalou, Anne Sabourin, François Portier:

Sharp error bounds for imbalanced classification: how many examples in the minority class? 838-846 - Freddie Bickford Smith, Adam Foster, Tom Rainforth:

Making Better Use of Unlabelled Data in Bayesian Active Learning. 847-855 - Nikita Puchkin, Eduard Gorbunov, Nikolay Kutuzov, Alexander V. Gasnikov:

Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems. 856-864 - Kartik Ahuja, Amin Mansouri, Yixin Wang:

Multi-Domain Causal Representation Learning via Weak Distributional Invariances. 865-873 - Amirhossein Ahmadian, Yifan Ding, Gabriel Eilertsen, Fredrik Lindsten:

Unsupervised Novelty Detection in Pretrained Representation Space with Locally Adapted Likelihood Ratio. 874-882 - Damien Scieur:

Adaptive Quasi-Newton and Anderson Acceleration Framework with Explicit Global (Accelerated) Convergence Rates. 883-891 - Wenxuan Bao, Jun Wu, Jingrui He:

BOBA: Byzantine-Robust Federated Learning with Label Skewness. 892-900 - Zhongliang Guo, Weiye Li, Yifei Qian, Ognjen Arandjelovic, Lei Fang:

A White-Box False Positive Adversarial Attack Method on Contrastive Loss Based Offline Handwritten Signature Verification Models. 901-909 - Florence Regol, Mark Coates:

Categorical Generative Model Evaluation via Synthetic Distribution Coarsening. 910-918 - Jean Feng, Alexej Gossmann, Gene Pennello, Nicholas Petrick, Berkman Sahiner, Romain Pirracchio:

Monitoring machine learning-based risk prediction algorithms in the presence of performativity. 919-927 - Adela Frances DePavia, Erasmo Tani, Ali Vakilian

:
Learning-Based Algorithms for Graph Searching Problems. 928-936 - Francesco Bacchiocchi, Gianmarco Genalti, Davide Maran, Marco Mussi, Marcello Restelli, Nicola Gatti, Alberto Maria Metelli:

Autoregressive Bandits. 937-945 - Taehyo Kim, Hai Shu, Qiran Jia, Mony J. de Leon:

DeepFDR: A Deep Learning-based False Discovery Rate Control Method for Neuroimaging Data. 946-954 - Zhenzhang Ye, Gabriel Peyré, Daniel Cremers, Pierre Ablin:

Enhancing Hypergradients Estimation: A Study of Preconditioning and Reparameterization. 955-963 - Lena Stempfle, Fredrik D. Johansson:

MINTY: Rule-based models that minimize the need for imputing features with missing values. 964-972 - Itamar Zimerman, Lior Wolf:

Multi-Dimensional Hyena for Spatial Inductive Bias. 973-981 - Amber Yijia Zheng, Tong He, Yixuan Qiu, Minjie Wang, David Wipf:

Graph Machine Learning through the Lens of Bilevel Optimization. 982-990 - Youssef Allouah, Rachid Guerraoui, Lê-Nguyên Hoang, Oscar Villemaud:

Robust Sparse Voting. 991-999 - Siddharth Joshi, Arnav Jain, Ali Payani, Baharan Mirzasoleiman:

Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over Quantity. 1000-1008 - Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano

, Qing Qu
:
Efficient Low-Dimensional Compression of Overparameterized Models. 1009-1017 - Mohan Wu, Martin Lysy:

Data-Adaptive Probabilistic Likelihood Approximation for Ordinary Differential Equations. 1018-1026 - Marwa El Halabi, Jakub Tarnawski, Ashkan Norouzi-Fard, Thuy-Duong Vuong:

Fairness in Submodular Maximization over a Matroid Constraint. 1027-1035 - Shuo Shuo Liu:

Unified Transfer Learning in High-Dimensional Linear Regression. 1036-1044 - Piersilvio De Bartolomeis, Javier Abad Martinez, Konstantin Donhauser, Fanny Yang:

Hidden yet quantifiable: A lower bound for confounding strength using randomized trials. 1045-1053 - Arnob Ghosh, Xingyu Zhou, Ness B. Shroff:

Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RL. 1054-1062 - Liyan Xie, Yuchen Liang, Venugopal V. Veeravalli:

Distributionally Robust Quickest Change Detection using Wasserstein Uncertainty Sets. 1063-1071 - Sree Harsha Tanneru, Chirag Agarwal, Himabindu Lakkaraju:

Quantifying Uncertainty in Natural Language Explanations of Large Language Models. 1072-1080 - Loay Raed Mualem, Ethan R. Elenberg, Moran Feldman, Amin Karbasi:

Submodular Minimax Optimization: Finding Effective Sets. 1081-1089 - Rajdeep Haldar, Yue Xing, Qifan Song:

Effect of Ambient-Intrinsic Dimension Gap on Adversarial Vulnerability. 1090-1098 - Futoshi Futami, Tomoharu Iwata:

Information-theoretic Analysis of Bayesian Test Data Sensitivity. 1099-1107 - Ron Mosenzon, Ali Vakilian:

Scalable Algorithms for Individual Preference Stable Clustering. 1108-1116 - Fan Yang, Pierre Le Bodic, Michael Kamp, Mario Boley:

Orthogonal Gradient Boosting for Simpler Additive Rule Ensembles. 1117-1125 - Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang:

When No-Rejection Learning is Consistent for Regression with Rejection. 1126-1134 - Soheun Yi, Sanghack Lee:

Filter, Rank, and Prune: Learning Linear Cyclic Gaussian Graphical Models. 1135-1143 - Matthew J. Holland:

Robust variance-regularized risk minimization with concomitant scaling. 1144-1152 - Yajing Fan, Wanli Shi, Yi Chang, Bin Gu:

Fast and Adversarial Robust Kernelized SDU Learning. 1153-1161 - Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu:

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization. 1162-1170 - Yakov Medvedovsky, Eran Treister, Tirza S. Routtenberg:

Efficient Graph Laplacian Estimation by Proximal Newton. 1171-1179 - Alihan Hüyük, Zhaozhi Qian, Mihaela van der Schaar:

Adaptive Experiment Design with Synthetic Controls. 1180-1188 - Alejandro D. de la Concha Duarte, Nicolas Vayatis, Argyris Kalogeratos:

Online non-parametric likelihood-ratio estimation by Pearson-divergence functional minimization. 1189-1197 - Ainhize Barrainkua, Paula Gordaliza, José Antonio Lozano, Novi Quadrianto:

Uncertainty Matters: Stable Conclusions under Unstable Assessment of Fairness Results. 1198-1206 - Ahmad Rammal, Kaja Gruntkowska, Nikita Fedin, Eduard Gorbunov, Peter Richtárik:

Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates. 1207-1215 - Yuko Kuroki, Alberto Rumi, Taira Tsuchiya, Fabio Vitale, Nicolò Cesa-Bianchi:

Best-of-Both-Worlds Algorithms for Linear Contextual Bandits. 1216-1224 - Shintaro Nakamura, Masashi Sugiyama:

Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed Bandit. 1225-1233 - Susanne Frick, Amer Krivosija, Alexander Munteanu:

Scalable Learning of Item Response Theory Models. 1234-1242 - Andi Nika, Debmalya Mandal, Adish Singla, Goran Radanovic:

Corruption-Robust Offline Two-Player Zero-Sum Markov Games. 1243-1251 - Shogo Iwazaki, Tomohiko Tanabe, Mitsuru Irie, Shion Takeno, Yu Inatsu:

Risk Seeking Bayesian Optimization under Uncertainty for Obtaining Extremum. 1252-1260 - Frederiek Wesel, Kim Batselier:

Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models. 1261-1269 - Rune D. Kjærsgaard, Pekka Parviainen, Saket Saurabh, Madhumita Kundu, Line H. Clemmensen:

Fair Soft Clustering. 1270-1278 - Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio:

Simulation-Free Schrödinger Bridges via Score and Flow Matching. 1279-1287 - Alexia Jolicoeur-Martineau, Kilian Fatras, Tal Kachman:

Generating and Imputing Tabular Data via Diffusion and Flow-based Gradient-Boosted Trees. 1288-1296 - Raphaël Carpintero Perez, Sébastien Da Veiga, Josselin Garnier, Brian Staber:

Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels. 1297-1305 - Daniel Robert-Nicoud, Andreas Krause, Viacheslav Borovitskiy:

Intrinsic Gaussian Vector Fields on Manifolds. 1306-1314 - Lucas Cosier, Rares Iordan, Sicelukwanda N. T. Zwane, Giovanni Franzese, James T. Wilson, Marc Peter Deisenroth, Alexander Terenin, Yasemin Bekiroglu:

A Unifying Variational Framework for Gaussian Process Motion Planning. 1315-1323 - Clément Bénard, Jeffrey Näf, Julie Josse:

MMD-based Variable Importance for Distributional Random Forest. 1324-1332 - Jörn Tebbe, Christoph Zimmer, Ansgar Steland, Markus Lange-Hegermann, Fabian Mies:

Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning. 1333-1341 - Soheila Molaei, Anshul Thakur, Ghazaleh Niknam, Andrew A. S. Soltan, Hadi Zare, David A. Clifton:

Federated Learning For Heterogeneous Electronic Health Records Utilising Augmented Temporal Graph Attention Networks. 1342-1350 - Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael J. Pencina, Matthew Engelhard:

Adaptive Discretization for Event PredicTion (ADEPT). 1351-1359 - Jung Eun Huh, Patrick Rebeschini:

Generalization Bounds for Label Noise Stochastic Gradient Descent. 1360-1368 - Marzi Heidari, Abdullah Alchihabi, Qing En, Yuhong Guo:

Adaptive Parametric Prototype Learning for Cross-Domain Few-Shot Classification. 1369-1377 - Zulqarnain Khan, Davin Hill, Aria Masoomi, Joshua T. Bone, Jennifer G. Dy:

Analyzing Explainer Robustness via Probabilistic Lipschitzness of Prediction Functions. 1378-1386 - Buu Phan, Ashish Khisti, Christos Louizos:

Importance Matching Lemma for Lossy Compression with Side Information. 1387-1395 - Konstantin Donhauser, Johan Lokna, Amartya Sanyal, March Boedihardjo, Robert Hönig, Fanny Yang:

Certified private data release for sparse Lipschitz functions. 1396-1404 - Jacob Trauger, Ambuj Tewari:

Sequence Length Independent Norm-Based Generalization Bounds for Transformers. 1405-1413 - Kexin Jin, Chenguang Liu, Jonas Latz:

Subsampling Error in Stochastic Gradient Langevin Diffusions. 1414-1422 - Minh N. Vu, Truc D. T. Nguyen, Tre' R. Jeter, My T. Thai:

Analysis of Privacy Leakage in Federated Large Language Models. 1423-1431 - Chendi Qian, Didier Chételat, Christopher Morris:

Exploring the Power of Graph Neural Networks in Solving Linear Optimization Problems. 1432-1440 - Qing En, Yuhong Guo:

Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation. 1441-1449 - Shachi Deshpande, Charles Marx, Volodymyr Kuleshov:

Online Calibrated and Conformal Prediction Improves Bayesian Optimization. 1450-1458 - Chinmaya Kausik, Yangyi Lu, Kevin Tan

, Maggie Makar, Yixin Wang, Ambuj Tewari:
Offline Policy Evaluation and Optimization Under Confounding. 1459-1467 - Bitya Neuhof, Yuval Benjamini:

Confident Feature Ranking. 1468-1476 - Jie Hu, Vishwaraj Doshi, Do Young Eun:

Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications. 1477-1485 - Harit Vishwakarma, Heguang Lin, Ramya Korlakai Vinayak:

Taming False Positives in Out-of-Distribution Detection with Human Feedback. 1486-1494 - Jonathan Lebensold, Doina Precup, Borja Balle:

On the Privacy of Selection Mechanisms with Gaussian Noise. 1495-1503 - Ulysse Gazin, Gilles Blanchard, Étienne Roquain:

Transductive conformal inference with adaptive scores. 1504-1512 - Hedda Cohen Indelman, Tamir Hazan:

Learning Latent Partial Matchings with Gumbel-IPF Networks. 1513-1521 - Serena Wang, Stephen Bates, P. M. Aronow, Michael I. Jordan:

On Counterfactual Metrics for Social Welfare: Incentives, Ranking, and Information Asymmetry. 1522-1530 - Christoph Dann, Claudio Gentile, Aldo Pacchiano:

Data-Driven Online Model Selection With Regret Guarantees. 1531-1539 - Raphael Rossellini, Rina Foygel Barber, Rebecca Willett:

Integrating Uncertainty Awareness into Conformalized Quantile Regression. 1540-1548 - Guneet S. Dhillon, George Deligiannidis, Tom Rainforth:

On the Expected Size of Conformal Prediction Sets. 1549-1557 - Martin Sevilla, Antonio G. Marques, Santiago Segarra:

Estimation of partially known Gaussian graphical models with score-based structural priors. 1558-1566 - Sho Takemori, Yuhei Umeda, Aditya Gopalan:

Model-Based Best Arm Identification for Decreasing Bandits. 1567-1575 - Tingting Ou, Rachel Cummings, Marco Avella Medina:

Thompson Sampling Itself is Differentially Private. 1576-1584 - Zhihan Xiong, Romain Camilleri, Maryam Fazel, Lalit Jain, Kevin G. Jamieson:

A/B Testing and Best-arm Identification for Linear Bandits with Robustness to Non-stationarity. 1585-1593 - Jinwon Sohn, Qifan Song, Guang Lin:

Fair Supervised Learning with A Simple Random Sampler of Sensitive Attributes. 1594-1602 - Ziye Ma, Ying Chen, Javad Lavaei, Somayeh Sojoudi:

Absence of spurious solutions far from ground truth: A low-rank analysis with high-order losses. 1603-1611 - Divyansh Jhunjhunwala, Shiqiang Wang, Gauri Joshi:

FedFisher: Leveraging Fisher Information for One-Shot Federated Learning. 1612-1620 - Davin Choo, Kirankumar Shiragur, Caroline Uhler:

Causal Discovery under Off-Target Interventions. 1621-1629 - Ying Jin, Ramki Gummadi, Zhengyuan Zhou, Jose H. Blanchet:

Feasible Q-Learning for Average Reward Reinforcement Learning. 1630-1638 - Xi Wang, Tomas Geffner, Justin Domke:

Joint control variate for faster black-box variational inference. 1639-1647 - Rong Tang, Yun Yang:

Adaptivity of Diffusion Models to Manifold Structures. 1648-1656 - Nathaniel Diamant, Ehsan Hajiramezanali, Tommaso Biancalani, Gabriele Scalia:

Conformalized Deep Splines for Optimal and Efficient Prediction Sets. 1657-1665 - Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna:

Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex. 1666-1674 - Zeqi Ye, Hansheng Jiang:

Smoothness-Adaptive Dynamic Pricing with Nonparametric Demand Learning. 1675-1683 - Zhaoqi Li, Kevin G. Jamieson, Lalit Jain:

Optimal Exploration is no harder than Thompson Sampling. 1684-1692 - Junze Deng, Yuan Cheng, Shaofeng Zou, Yingbin Liang:

Sample Complexity Characterization for Linear Contextual MDPs. 1693-1701 - Soumyabrata Pal, Prateek Varshney, Gagan Madan, Prateek Jain, Abhradeep Thakurta, Gaurav Aggarwal, Pradeep Shenoy, Gaurav Srivastava:

Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse Components. 1702-1710 - Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines:

Queuing dynamics of asynchronous Federated Learning. 1711-1719 - Gokcan Tatli, Yi Chen, Ramya Korlakai Vinayak:

Learning Populations of Preferences via Pairwise Comparison Queries. 1720-1728 - Xunzhi Xiang, Kun Jing, Jungang Xu:

A Neural Architecture Predictor based on GNN-Enhanced Transformer. 1729-1737 - Yue Liu, Ziyi Yu, Zitu Liu, Wenjie Tian:

Efficient Neural Architecture Design via Capturing Architecture-Performance Joint Distribution. 1738-1746 - Chungpa Lee, Joonhwan Chang, Jy-yong Sohn:

Analysis of Using Sigmoid Loss for Contrastive Learning. 1747-1755 - Tong Wu:

Robust Data Clustering with Outliers via Transformed Tensor Low-Rank Representation. 1756-1764 - Sangil Han, Sungkyu Jung, Kyoowon Kim:

Robust SVD Made Easy: A fast and reliable algorithm for large-scale data analysis. 1765-1773 - Hao Liang, Zhiquan Luo:

Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures. 1774-1782 - Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, Benjamin Säfken:

Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean. 1783-1791 - Moshe Eliasof, Eldad Haber, Eran Treister, Carola-Bibiane Schönlieb:

On The Temporal Domain of Differential Equation Inspired Graph Neural Networks. 1792-1800 - Dominik Wagner, Basim Khajwal, Luke Ong:

Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models via Reparameterisation and Smoothing. 1801-1809 - Louis Sharrock, Daniel Dodd, Christopher Nemeth:

Tuning-Free Maximum Likelihood Training of Latent Variable Models via Coin Betting. 1810-1818 - Daniel Dold, David Rügamer, Beate Sick, Oliver Dürr:

Bayesian Semi-structured Subspace Inference. 1819-1827 - Vo Nguyen Le Duy, Hsuan-Tien Lin, Ichiro Takeuchi:

CAD-DA: Controllable Anomaly Detection after Domain Adaptation by Statistical Inference. 1828-1836 - Sophie Jaffard, Samuel Vaiter, Alexandre Muzy, Patricia Reynaud-Bouret:

Provable local learning rule by expert aggregation for a Hawkes network. 1837-1845 - Juliette Achddou, Nicolò Cesa-Bianchi, Pierre Laforgue:

Multitask Online Learning: Listen to the Neighborhood Buzz. 1846-1854 - Tuukka Korhonen, Fedor V. Fomin, Pekka Parviainen:

Structural perspective on constraint-based learning of Markov networks. 1855-1863 - Nicolas Huynh, Jeroen Berrevoets, Nabeel Seedat, Jonathan Crabbé, Zhaozhi Qian, Mihaela van der Schaar:

DAGnosis: Localized Identification of Data Inconsistencies using Structures. 1864-1872 - Isabel Haasler, Pascal Frossard:

Bures-Wasserstein Means of Graphs. 1873-1881 - Nikolaos Nakis, Abdulkadir Çelikkanat, Louis Boucherie, Sune Lehmann, Morten Mørup:

Time to Cite: Modeling Citation Networks using the Dynamic Impact Single-Event Embedding Model. 1882-1890 - Marcus A. K. September, Francesco Sanna Passino, Leonie Tabea Goldmann, Anton Hinel:

Extended Deep Adaptive Input Normalization for Preprocessing Time Series Data for Neural Networks. 1891-1899 - Wei Zhang, Zhenni Wang:

Restricted Isometry Property of Rank-One Measurements with Random Unit-Modulus Vectors. 1900-1908 - Prakhar Verma, Vincent Adam, Arno Solin:

Variational Gaussian Process Diffusion Processes. 1909-1917 - Pan Zhao, Antoine Chambaz, Julie Josse, Shu Yang:

Positivity-free Policy Learning with Observational Data. 1918-1926 - Lars Lorch, Andreas Krause, Bernhard Schölkopf:

Causal Modeling with Stationary Diffusions. 1927-1935 - Yuma Ichikawa, Koji Hukushima:

Learning Dynamics in Linear VAE: Posterior Collapse Threshold, Superfluous Latent Space Pitfalls, and Speedup with KL Annealing. 1936-1944 - Holger S. G. Heidrich, Jannik Irmai, Bjoern Andres:

A 4-Approximation Algorithm for Min Max Correlation Clustering. 1945-1953 - Weichen Li, Rati Devidze, Waleed Mustafa, Sophie Fellenz:

Ethics in Action: Training Reinforcement Learning Agents for Moral Decision-making In Text-based Adventure Games. 1954-1962 - Stephan Wäldchen, Kartikey Sharma, Berkant Turan, Max Zimmer, Sebastian Pokutta:

Interpretability Guarantees with Merlin-Arthur Classifiers. 1963-1971 - Eugene Berta, Francis R. Bach, Michael I. Jordan:

Classifier Calibration with ROC-Regularized Isotonic Regression. 1972-1980 - Petru Tighineanu, Lukas Grossberger, Paul Baireuther, Kathrin Skubch, Stefan Falkner, Julia Vinogradska, Felix Berkenkamp:

Scalable Meta-Learning with Gaussian Processes. 1981-1989 - Lesi Chen, Haishan Ye, Luo Luo:

An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization. 1990-1998 - Marco Pegoraro, Sanketh Vedula, Aviv Rosenberg, Irene Tallini, Emanuele Rodolà, Alex M. Bronstein:

Vector Quantile Regression on Manifolds. 1999-2007 - Jiulin Wang, Xu Shi, Rujun Jiang:

Near-Optimal Convex Simple Bilevel Optimization with a Bisection Method. 2008-2016 - Gabriel Laberge, Yann Batiste Pequignot, Mario Marchand, Foutse Khomh:

Tackling the XAI Disagreement Problem with Regional Explanations. 2017-2025 - José Manuel de Frutos, Pablo M. Olmos, Manuel Alberto Vazquez Lopez, Joaquín Míguez:

Training Implicit Generative Models via an Invariant Statistical Loss. 2026-2034 - Junyi Fan, Yuxuan Han, Jialin Zeng, Jian-Feng Cai, Yang Wang, Yang Xiang, Jiheng Zhang:

RL in Markov Games with Independent Function Approximation: Improved Sample Complexity Bound under the Local Access Model. 2035-2043 - Jing Dong, Baoxiang Wang, Yaoliang Yu:

Convergence to Nash Equilibrium and No-regret Guarantee in (Markov) Potential Games. 2044-2052 - Ethan B. Andrew, David R. Westhead, Luisa Cutillo:

GmGM: a fast multi-axis Gaussian graphical model. 2053-2061 - Cheuk Ting Li, Jingwei Zhang, Farzan Farnia:

On Convergence in Wasserstein Distance and f-divergence Minimization Problems. 2062-2070 - Yiyang Sun, Zhi Chen, Vittorio Orlandi, Tong Wang, Cynthia Rudin:

Sparse and Faithful Explanations Without Sparse Models. 2071-2079 - Zihao Hu, Guanghui Wang, Xi Wang, Andre Wibisono, Jacob D. Abernethy, Molei Tao:

Extragradient Type Methods for Riemannian Variational Inequality Problems. 2080-2088 - Dmytro Velychko, Simon Damm, Asja Fischer, Jörg Lücke:

Learning Sparse Codes with Entropy-Based ELBOs. 2089-2097 - Shiliang Zuo:

Near Optimal Adversarial Attacks on Stochastic Bandits and Defenses with Smoothed Responses. 2098-2106 - Lorenzo Mauri, Giacomo Zanella:

Robust Approximate Sampling via Stochastic Gradient Barker Dynamics. 2107-2115 - Haoyue Tang, Tian Xie, Aosong Feng, Hanyu Wang, Chenyang Zhang, Yang Bai:

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint. 2116-2124 - Jiashuo Liu, Jiayun Wu, Jie Peng, Xiaoyu Wu, Yang Zheng, Bo Li, Peng Cui:

Enhancing Distributional Stability among Sub-populations. 2125-2133 - Harsh Parikh, Quinn Lanners, Zade Akras, Sahar Zafar, M. Brandon Westover, Cynthia Rudin, Alexander Volfovsky:

Safe and Interpretable Estimation of Optimal Treatment Regimes. 2134-2142 - Gennaro Gala, Cassio P. de Campos, Robert Peharz, Antonio Vergari, Erik Quaeghebeur:

Probabilistic Integral Circuits. 2143-2151 - Martino Bernasconi, Alberto Marchesi, Francesco Trovò:

Learning Extensive-Form Perfect Equilibria in Two-Player Zero-Sum Sequential Games. 2152-2160 - Rafal Szlendak, Elnur Gasanov, Peter Richtárik:

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent. 2161-2169 - Mingyuan Zhang, Shivani Agarwal:

Multiclass Learning from Noisy Labels for Non-decomposable Performance Measures. 2170-2178 - Cai Zhou, Rose Yu, Yusu Wang:

On the Theoretical Expressive Power and the Design Space of Higher-Order Graph Transformers. 2179-2187 - Dominik Janzing, Patrick Blöbaum, Atalanti-Anastasia Mastakouri, Philipp Michael Faller, Lenon Minorics, Kailash Budhathoki:

Quantifying intrinsic causal contributions via structure preserving interventions. 2188-2196 - Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, Ullrich Köthe:

Free-form Flows: Make Any Architecture a Normalizing Flow. 2197-2205 - Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard, Nadia Oudjane:

Efficient Model-Based Concave Utility Reinforcement Learning through Greedy Mirror Descent. 2206-2214 - Yongyi Guo, Ziping Xu, Susan A. Murphy:

Online learning in bandits with predicted context. 2215-2223 - Jonathan So, Richard E. Turner:

Optimising Distributions with Natural Gradient Surrogates. 2224-2232 - Justin M. Baker, Qingsong Wang, Martin Berzins, Thomas Strohmer, Bao Wang:

Monotone Operator Theory-Inspired Message Passing for Learning Long-Range Interaction on Graphs. 2233-2241 - Saba Ahmadi, Avrim Blum, Omar Montasser, Kevin M. Stangl:

Agnostic Multi-Robust Learning using ERM. 2242-2250 - Tolga Dimlioglu, Anna Choromanska:

GRAWA: Gradient-based Weighted Averaging for Distributed Training of Deep Learning Models. 2251-2259 - Pratik Patil, Yuchen Wu, Ryan J. Tibshirani:

Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent. 2260-2268 - Mahed Abroshan, Andrew Elliott, Mohammad Mahdi Khalili:

Imposing Fairness Constraints in Synthetic Data Generation. 2269-2277 - Krzysztof Choromanski, Shanda Li, Valerii Likhosherstov, Kumar Avinava Dubey, Shengjie Luo, Di He, Yiming Yang, Tamás Sarlós, Thomas Weingarten, Adrian Weller:

Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers. 2278-2286 - Yun-Peng Li, Hans-Andrea Loeliger:

Backward Filtering Forward Deciding in Linear Non-Gaussian State Space Models. 2287-2295 - Nguyen Hoang Khoi Do, Tanmoy Chowdhury, Chen Ling, Liang Zhao, My T. Thai:

MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence Maximization. 2296-2304 - Wonyoung Kim, Garud Iyengar, Assaf Zeevi:

A Doubly Robust Approach to Sparse Reinforcement Learning. 2305-2313 - Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Ali Tajer:

General Identifiability and Achievability for Causal Representation Learning. 2314-2322 - Stephen U. Pasteris, Alberto Rumi, Fabio Vitale, Nicolò Cesa-Bianchi:

Sum-max Submodular Bandits. 2323-2331 - Samuel Gruffaz, Kyurae Kim, Alain Durmus, Jacob R. Gardner:

Stochastic Approximation with Biased MCMC for Expectation Maximization. 2332-2340 - Amirhossein Reisizadeh, Khashayar Gatmiry, Asuman E. Ozdaglar:

EM for Mixture of Linear Regression with Clustered Data. 2341-2349 - Pavel E. Dvurechensky, Jia-Jie Zhu:

Analysis of Kernel Mirror Prox for Measure Optimization. 2350-2358 - Kais Hariz, Hachem Kadri, Stéphane Ayache, Maher Moakher, Thierry Artières:

Implicit Regularization in Deep Tucker Factorization: Low-Rankness via Structured Sparsity. 2359-2367 - Michael Rizvi-Martel, Maude Lizaire, Clara Lacroce, Guillaume Rabusseau:

Simulating weighted automata over sequences and trees with transformers. 2368-2376 - Arnab Auddy, Haolin Zou, Kamiar Rahnama Rad, Arian Maleki:

Approximate Leave-one-out Cross Validation for Regression with ℓ1 Regularizers. 2377-2385 - David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:

Learning Safety Constraints from Demonstrations with Unknown Rewards. 2386-2394 - Mengxiao Zhang, Haipeng Luo:

Online Learning in Contextual Second-Price Pay-Per-Click Auctions. 2395-2403 - Miguel Fuentes, Brett C. Mullins, Ryan McKenna, Gerome Miklau, Daniel Sheldon:

Joint Selection: Adaptively Incorporating Public Information for Private Synthetic Data. 2404-2412 - Da Long, Wei W. Xing, Aditi S. Krishnapriyan, Robert M. Kirby, Shandian Zhe, Michael W. Mahoney:

Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels. 2413-2421 - T. Mitchell Roddenberry, Yu Zhu, Santiago Segarra:

An Impossibility Theorem for Node Embedding. 2422-2430 - Gian Carlo Diluvi, Benjamin Bloem-Reddy, Trevor Campbell:

Mixed variational flows for discrete variables. 2431-2439 - Shibo Li, Xin Yu, Wei W. Xing, Robert M. Kirby, Akil Narayan, Shandian Zhe:

Multi-Resolution Active Learning of Fourier Neural Operators. 2440-2448 - Kuba Grudzien Kuba, Masatoshi Uehara, Sergey Levine, Pieter Abbeel:

Functional Graphical Models: Structure Enables Offline Data-Driven Optimization. 2449-2457 - Wei-Ning Chen, Graham Cormode, Akash Bharadwaj, Peter Romov, Ayfer Özgür:

Federated Experiment Design under Distributed Differential Privacy. 2458-2466 - Federica Granese, Marco Romanelli, Pablo Piantanida:

Optimal Zero-Shot Detector for Multi-Armed Attacks. 2467-2475 - Sanath Kumar Krishnamurthy, Adrienne Margaret Propp, Susan Athey:

Towards Costless Model Selection in Contextual Bandits: A Bias-Variance Perspective. 2476-2484 - Yash P. Patel, Sahana Rayan, Ambuj Tewari:

Conformal Contextual Robust Optimization. 2485-2493 - Yixin Ren, Yewei Xia, Hao Zhang, Jihong Guan, Shuigeng Zhou:

Learning Adaptive Kernels for Statistical Independence Tests. 2494-2502 - Jacob D. Abernethy, Robert E. Schapire, Umar Syed:

Lexicographic Optimization: Algorithms and Stability. 2503-2511 - Jessica Dai, Bailey Flanigan, Meena Jagadeesan, Nika Haghtalab, Chara Podimata:

Can Probabilistic Feedback Drive User Impacts in Online Platforms? 2512-2520 - Changhao Shi, Gal Mishne:

Learning Cartesian Product Graphs with Laplacian Constraints. 2521-2529 - Rentian Yao, Linjun Huang, Yun Yang:

Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient Flow. 2530-2538 - Samuel Showalter, Alex J. Boyd, Padhraic Smyth, Mark Steyvers:

Bayesian Online Learning for Consensus Prediction. 2539-2547 - Cyrille Kone, Emilie Kaufmann, Laura Richert:

Bandit Pareto Set Identification: the Fixed Budget Setting. 2548-2556 - Jiachen T. Wang, Prateek Mittal, Ruoxi Jia:

Efficient Data Shapley for Weighted Nearest Neighbor Algorithms. 2557-2565 - Vincent Hsiao, Dana S. Nau, Bobak Pezeshki, Rina Dechter:

Surrogate Bayesian Networks for Approximating Evolutionary Games. 2566-2574 - Thiago Ramos, Rodrigo Loro Schuller, Alex Akira Okuno, Lucas Nissenbaum, Roberto I Oliveira, Paulo Orenstein:

BlockBoost: Scalable and Efficient Blocking through Boosting. 2575-2583 - Yan Shen, Zhanghexuan Ji, Chunwei Ma, Mingchen Gao:

Continual Domain Adversarial Adaptation via Double-Head Discriminators. 2584-2592 - Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, Pierre-Luc Bacon:

Maximum entropy GFlowNets with soft Q-learning. 2593-2601 - Arnab Maiti, Ross Boczar, Kevin G. Jamieson, Lillian J. Ratliff:

Near-Optimal Pure Exploration in Matrix Games: A Generalization of Stochastic Bandits & Dueling Bandits. 2602-2610 - Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin:

Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo. 2611-2619 - Kaiwen Wu, Jonathan Wenger, Haydn Thomas Jones, Geoff Pleiss, Jacob R. Gardner:

Large-Scale Gaussian Processes via Alternating Projection. 2620-2628 - Natalia Martínez, Martín Bertrán, Guillermo Sapiro:

Achieving Group Distributional Robustness and Minimax Group Fairness with Interpolating Classifiers. 2629-2637 - James Leiner, Aaditya Ramdas:

Graph fission and cross-validation. 2638-2646 - Panagiotis Lymperopoulos, Liping Liu:

Graph Pruning for Enumeration of Minimal Unsatisfiable Subsets. 2647-2655 - Yuda Shao, Shan Yu, Tianshu Feng

:
Nonparametric Automatic Differentiation Variational Inference with Spline Approximation. 2656-2664 - Eliot Shekhtman, Sarah Dean:

Strategic Usage in a Multi-Learner Setting. 2665-2673 - Huy Nguyen, Khai Nguyen, Nhat Ho:

On Parameter Estimation in Deviated Gaussian Mixture of Experts. 2674-2682 - Huy Nguyen, TrungTin Nguyen, Khai Nguyen, Nhat Ho:

Towards Convergence Rates for Parameter Estimation in Gaussian-gated Mixture of Experts. 2683-2691 - Abhinav Chakraborty, Anirban Chatterjee, Abhinandan Dalal:

PrIsing: Privacy-Preserving Peer Effect Estimation via Ising Model. 2692-2700 - Sijin Chen, Zhize Li, Yuejie Chi:

Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication Compression. 2701-2709 - Tuan Nguyen, Hirotada Honda, Takashi Sano, Vinh Nguyen, Shugo Nakamura, Tan Minh Nguyen:

From Coupled Oscillators to Graph Neural Networks: Reducing Over-smoothing via a Kuramoto Model-based Approach. 2710-2718 - Zhishuai Liu, Pan Xu:

Distributionally Robust Off-Dynamics Reinforcement Learning: Provable Efficiency with Linear Function Approximation. 2719-2727 - Xiaoyang Wang, Dimitrios Dimitriadis, Sanmi Koyejo, Shruti Tople:

Invariant Aggregator for Defending against Federated Backdoor Attacks. 2728-2736 - Zihao Li, Xiang Ji, Minshuo Chen, Mengdi Wang:

Policy Evaluation for Reinforcement Learning from Human Feedback: A Sample Complexity Analysis. 2737-2745 - Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:

Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. 2746-2754 - Maheed H. Ahmed, Mahsa Ghasemi:

Privacy-Preserving Decentralized Actor-Critic for Cooperative Multi-Agent Reinforcement Learning. 2755-2763 - Yunfan Li, Lin Yang:

On the Model-Misspecification in Reinforcement Learning. 2764-2772 - Eitan Levin, Mateo Díaz:

Any-dimensional equivariant neural networks. 2773-2781 - Sara LaPlante, Emilija Perkovic:

Conditional Adjustment in a Markov Equivalence Class. 2782-2790 - Shivvrat Arya, Tahrima Rahman, Vibhav Gogate:

Learning to Solve the Constrained Most Probable Explanation Task in Probabilistic Graphical Models. 2791-2799 - Zhaoyang Shi, Krishna Balasubramanian, Wolfgang Polonik:

Adaptive and non-adaptive minimax rates for weighted Laplacian-Eigenmap based nonparametric regression. 2800-2808 - Chris Cundy, Rishi Desai, Stefano Ermon:

Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients. 2809-2817 - Shivvrat Arya, Yu Xiang, Vibhav Gogate:

Deep Dependency Networks and Advanced Inference Schemes for Multi-Label Classification. 2818-2826 - Quan M. Nguyen, Nishant Mehta:

Near-optimal Per-Action Regret Bounds for Sleeping Bandits. 2827-2835 - Xinrui Ruan, Jingshen Wang, Yingfei Wang, Waverly Wei:

Electronic Medical Records Assisted Digital Clinical Trial Design. 2836-2844 - Zhi Zhang, Weijian Li, Han Liu:

Multivariate Time Series Forecasting By Graph Attention Networks With Theoretical Guarantees. 2845-2853 - Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

:
Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods. 2854-2862 - Shibal Ibrahim, Kayhan Behdin, Rahul Mazumder:

End-to-end Feature Selection Approach for Learning Skinny Trees. 2863-2871 - Ryan Thompson, Edwin V. Bonilla, Robert Kohn:

Contextual Directed Acyclic Graphs. 2872-2880 - Yujin Han, Mingwenchan Xu, Leying Guan:

Conformalized Semi-supervised Random Forest for Classification and Abnormality Detection. 2881-2889 - Kei Sen Fong, Mehul Motani:

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data. 2890-2898 - Sijin Chen, Xiwei Cheng, Anthony Man-Cho So:

Non-Convex Joint Community Detection and Group Synchronization via Generalized Power Method. 2899-2907 - Chung-En Tsai, Hao-Chung Cheng, Yen-Huan Li:

Fast Minimization of Expected Logarithmic Loss via Stochastic Dual Averaging. 2908-2916 - Jiaxin Zhang, Kamalika Das, Kumar Sricharan:

Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification Methods. 2917-2925 - Manuel Haussmann, Tran Minh Son Le, Viivi Halla-aho, Samu Kurki, Jussi Leinonen, Miika Koskinen, Samuel Kaski, Harri Lähdesmäki:

Estimating treatment effects from single-arm trials via latent-variable modeling. 2926-2934 - Yiling Kuang, Chao Yang, Yang Yang, Shuang Li:

Unveiling Latent Causal Rules: A Temporal Point Process Approach for Abnormal Event Explanation. 2935-2943 - Ayman Chaouki, Jesse Read, Albert Bifet:

Online Learning of Decision Trees with Thompson Sampling. 2944-2952 - Yu Yang, Eric Gan, Gintare Karolina Dziugaite, Baharan Mirzasoleiman:

Identifying Spurious Biases Early in Training through the Lens of Simplicity Bias. 2953-2961 - Subhojyoti Mukherjee, Qiaomin Xie, Josiah P. Hanna, Robert D. Nowak:

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits. 2962-2970 - Ali Ebrahimpour Boroojeny, Matus Telgarsky, Hari Sundaram:

Spectrum Extraction and Clipping for Implicitly Linear Layers. 2971-2979 - Shima Alizadeh, Aniruddha Bhargava, Karthick Gopalswamy, Lalit Jain, Branislav Kveton, Ge Liu:

Pessimistic Off-Policy Multi-Objective Optimization. 2980-2988 - Søren Wengel Mogensen:

Faithful graphical representations of local independence. 2989-2997 - Ha Manh Bui, Anqi Liu:

Density-Regression: Efficient and Distance-aware Deep Regressor for Uncertainty Estimation under Distribution Shifts. 2998-3006 - Paul Viallard, Rémi Emonet, Amaury Habrard, Emilie Morvant, Valentina Zantedeschi:

Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures. 3007-3015 - Amanda Olmin

, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten:
On the connection between Noise-Contrastive Estimation and Contrastive Divergence. 3016-3024 - Angela Zhou:

Reward-Relevance-Filtered Linear Offline Reinforcement Learning. 3025-3033 - Ahmad Rashid, Serena Hacker, Guojun Zhang, Agustinus Kristiadi, Pascal Poupart:

Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks. 3034-3042 - Yifu Tang, Yingfei Wang, Zeyu Zheng:

Stochastic Multi-Armed Bandits with Strongly Reward-Dependent Delays. 3043-3051 - Julia Grosse, Rahel Fischer, Roman Garnett, Philipp Hennig:

A Greedy Approximation for k-Determinantal Point Processes. 3052-3060 - Long-Fei Li, Peng Zhao, Zhi-Hua Zhou:

Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Transition. 3061-3069 - Efe Mert Karagözlü, Yasar Cahit Yildirim, Çagin Ararat, Cem Tekin:

Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector Bandits. 3070-3078 - Hadrien Hendrikx, Paul Mangold, Aurélien Bellet:

The Relative Gaussian Mechanism and its Application to Private Gradient Descent. 3079-3087 - Pim de Haan, Taco Cohen, Johann Brehmer:

Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers. 3088-3096 - Washim Uddin Mondal, Vaneet Aggarwal:

Improved Sample Complexity Analysis of Natural Policy Gradient Algorithm with General Parameterization for Infinite Horizon Discounted Reward Markov Decision Processes. 3097-3105 - Hakuei Yamada, Junpei Komiyama, Kenshi Abe, Atsushi Iwasaki:

Learning Fair Division from Bandit Feedback. 3106-3114 - Tam Le, Truyen Nguyen, Kenji Fukumizu:

Optimal Transport for Measures with Noisy Tree Metric. 3115-3123 - Olawale Salaudeen, Sanmi Koyejo:

Causally Inspired Regularization Enables Domain General Representations. 3124-3132 - Victor Dheur, Souhaib Ben Taieb:

Probabilistic Calibration by Design for Neural Network Regression. 3133-3141 - Anna M. Maddux, Maryam Kamgarpour:

Multi-Agent Learning in Contextual Games under Unknown Constraints. 3142-3150 - MohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi:

A Scalable Algorithm for Individually Fair k-Means Clustering. 3151-3159 - Yannick Eich, Bastian Alt, Heinz Koeppl:

Approximate Control for Continuous-Time POMDPs. 3160-3168 - Germano Gabbianelli, Gergely Neu, Matteo Papini, Nneka Okolo:

Offline Primal-Dual Reinforcement Learning for Linear MDPs. 3169-3177 - Vincent Souveton, Arnaud Guillin, Jens Jasche, Guilhem Lavaux, Manon Michel:

Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity. 3178-3186 - Yuqin Yang, Saber Salehkaleybar, Negar Kiyavash:

Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data. 3187-3195 - Jae-Jun Lee, Sung Whan Yoon:

XB-MAML: Learning Expandable Basis Parameters for Effective Meta-Learning with Wide Task Coverage. 3196-3204 - Khaled Eldowa

, Andrea Paudice:
General Tail Bounds for Non-Smooth Stochastic Mirror Descent. 3205-3213 - Boris Flach, Dmitrij Schlesinger, Alexander Shekhovtsov:

Symmetric Equilibrium Learning of VAEs. 3214-3222 - Zheng Zhao, Sebastian Mair, Thomas B. Schön, Jens Sjölund:

On Feynman-Kac training of partial Bayesian neural networks. 3223-3231 - Arpan Losalka, Jonathan Scarlett:

No-Regret Algorithms for Safe Bayesian Optimization with Monotonicity Constraints. 3232-3240 - Guilherme Augusto Zagatti, See-Kiong Ng, Stéphane Bressan:

Learning multivariate temporal point processes via the time-change theorem. 3241-3249 - Chaoqi Wang, Yuxin Chen, Kevin Murphy:

Model-based Policy Optimization under Approximate Bayesian Inference. 3250-3258 - Xiangyu Zeng, Jie Lin, Piao Hu, Zhihao Li, Tianxi Huang:

SDMTR: A Brain-inspired Transformer for Relation Inference. 3259-3267 - Zitong Ma, Wenbo Zhao, Zhe Yang:

Directed Hypergraph Representation Learning for Link Prediction. 3268-3276 - Zhi Zhang, Chenyu Ma, Saleh Soudijani, Sadegh Soudjani:

Formal Verification of Unknown Stochastic Systems via Non-parametric Estimation. 3277-3285 - Oskar Kviman, Nicola Branchini, Víctor Elvira, Jens Lagergren:

Variational Resampling. 3286-3294 - Tom Sander, Maxime Sylvestre, Alain Durmus:

Implicit Bias in Noisy-SGD: With Applications to Differentially Private Training. 3295-3303 - Ivan Peshekhonov, Aleksey Arzhantsev, Maxim V. Rakhuba:

Training a Tucker Model With Shared Factors: a Riemannian Optimization Approach. 3304-3312 - Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen:

Don't Be Pessimistic Too Early: Look K Steps Ahead! 3313-3321 - Jorge García-Carrasco, Alejandro Maté, Juan C. Trujillo:

How does GPT-2 Predict Acronyms? Extracting and Understanding a Circuit via Mechanistic Interpretability. 3322-3330 - Hermanni Hälvä, Jonathan So, Richard E. Turner, Aapo Hyvärinen:

Identifiable Feature Learning for Spatial Data with Nonlinear ICA. 3331-3339 - Srikar Katta, Harsh Parikh, Cynthia Rudin, Alexander Volfovsky:

Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data. 3340-3348 - Nisha Chandramoorthy, Florian T. Schäfer, Youssef M. Marzouk:

Score Operator Newton transport. 3349-3357 - Maria C. Novitasari, Johannes Quaas, Miguel Rodrigues:

ALAS: Active Learning for Autoconversion Rates Prediction from Satellite Data. 3358-3366 - Alexandre Verine, Muni Sreenivas Pydi, Benjamin Négrevergne, Yann Chevaleyre:

Optimal Budgeted Rejection Sampling for Generative Models. 3367-3375 - Luhuan Wu, Sinead A. Williamson:

Posterior Uncertainty Quantification in Neural Networks using Data Augmentation. 3376-3384 - Wenbo Zhao, Zitong Ma, Zhe Yang:

DHMConv: Directed Hypergraph Momentum Convolution Framework. 3385-3393 - Sebastian Jäger

, Felix Biessmann:
From Data Imputation to Data Cleaning - Automated Cleaning of Tabular Data Improves Downstream Predictive Performance. 3394-3402 - Filip Ekström Kelvinius, Fredrik Lindsten:

Discriminator Guidance for Autoregressive Diffusion Models. 3403-3411 - Dongsheng Ding, Zhengyan Huan, Alejandro Ribeiro:

Resilient Constrained Reinforcement Learning. 3412-3420 - Isu Jeong, Seulki Lee:

On-Demand Federated Learning for Arbitrary Target Class Distributions. 3421-3429 - Prarabdh Shukla, Gagan Raj Gupta, Kunal Dutta:

DiffRed: Dimensionality reduction guided by stable rank. 3430-3438 - Ambrus Tamás, Szabolcs Szentpéteri, Balázs Csanád Csáji:

Data-Driven Confidence Intervals with Optimal Rates for the Mean of Heavy-Tailed Distributions. 3439-3447 - Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh:

Communication-Efficient Federated Learning With Data and Client Heterogeneity. 3448-3456 - Yann Fraboni, Martin Van Waerebeke, Kevin Scaman, Richard Vidal, Laetitia Kameni, Marco Lorenzi:

SIFU: Sequential Informed Federated Unlearning for Efficient and Provable Client Unlearning in Federated Optimization. 3457-3465 - Teodora Popordanoska, Sebastian Gregor Gruber, Aleksei Tiulpin, Florian Büttner, Matthew B. Blaschko:

Consistent and Asymptotically Unbiased Estimation of Proper Calibration Errors. 3466-3474 - Dharmesh Tailor, Aditya Patra, Rajeev Verma, Putra Manggala, Eric T. Nalisnick:

Learning to Defer to a Population: A Meta-Learning Approach. 3475-3483 - Kevin Li, Max Balakirsky, Simon Mak:

Trigonometric Quadrature Fourier Features for Scalable Gaussian Process Regression. 3484-3492 - Ilyas Fatkhullin, Niao He:

Taming Nonconvex Stochastic Mirror Descent with General Bregman Divergence. 3493-3501 - Bahador Rashidi, Kerrick Johnstonbaugh, Chao Gao:

Cylindrical Thompson Sampling for High-Dimensional Bayesian Optimization. 3502-3510 - Gandharv Patil, Aditya Mahajan, Doina Precup:

On learning history-based policies for controlling Markov decision processes. 3511-3519 - Patrick Kolpaczki, Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier:

SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification. 3520-3528 - Vinod Kumar Chauhan, Jiandong Zhou, Ghadeer O. Ghosheh, Soheila Molaei, David A. Clifton:

Dynamic Inter-treatment Information Sharing for Individualized Treatment Effects Estimation. 3529-3537 - Alexandra Maria Hotti, Lennart Alexander Van der Goten, Jens Lagergren:

Benefits of Non-Linear Scale Parameterizations in Black Box Variational Inference through Smoothness Results and Gradient Variance Bounds. 3538-3546 - Volodimir Mitarchuk, Clara Lacroce, Rémi Eyraud, Rémi Emonet, Amaury Habrard, Guillaume Rabusseau:

Length independent PAC-Bayes bounds for Simple RNNs. 3547-3555 - Hristo Papazov, Scott Pesme, Nicolas Flammarion:

Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks. 3556-3564 - Atsushi Nitanda, Ryuhei Kikuchi, Shugo Maeda, Denny Wu:

Why is parameter averaging beneficial in SGD? An objective smoothing perspective. 3565-3573 - Ryusei Shingaki, Manabu Kuroki:

Identification and Estimation of "Causes of Effects" using Covariate-Mediator Information. 3574-3582 - Élise Crepon, Aurélien Garivier, Wouter M. Koolen:

Sequential learning of the Pareto front for multi-objective bandits. 3583-3591 - Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, Kuldeep S. Meel:

Equivalence Testing: The Power of Bounded Adaptivity. 3592-3600 - Krzysztof Kacprzyk, Mihaela van der Schaar:

Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations. 3601-3609 - Weichen Wu, Jisu Kim, Alessandro Rinaldo:

On the estimation of persistence intensity functions and linear representations of persistence diagrams. 3610-3618 - Yuhao Wang, Ming Gao, Wai Ming Tai, Bryon Aragam, Arnab Bhattacharyya:

Optimal estimation of Gaussian (poly)trees. 3619-3627 - Thomas L. Lee, Amos J. Storkey:

Approximate Bayesian Class-Conditional Models under Continuous Representation Shift. 3628-3636 - Paolo Battellani, Alberto Maria Metelli, Francesco Trovò:

Dissimilarity Bandits. 3637-3645 - Piyushi Manupriya, Rachit Keerti Das, Sayantan Biswas, Saketha Nath Jagarlapudi:

Consistent Optimal Transport with Empirical Conditional Measures. 3646-3654 - Simon Martin, Francis R. Bach, Giulio Biroli:

On the Impact of Overparameterization on the Training of a Shallow Neural Network in High Dimensions. 3655-3663 - Jan P. Engelmann

, Alessandro Palma, Jakub M. Tomczak, Fabian J. Theis, Francesco Paolo Casale:
Mixed Models with Multiple Instance Learning. 3664-3672 - Jiayi Huang, Han Zhong, Liwei Wang, Lin Yang:

Horizon-Free and Instance-Dependent Regret Bounds for Reinforcement Learning with General Function Approximation. 3673-3681 - Konstantinos Emmanouilidis, René Vidal, Nicolas Loizou:

Stochastic Extragradient with Random Reshuffling: Improved Convergence for Variational Inequalities. 3682-3690 - Zhao Lyu, Wai Ming Tai, Mladen Kolar, Bryon Aragam:

Inconsistency of Cross-Validation for Structure Learning in Gaussian Graphical Models. 3691-3699 - Iden Kalemaj, Shiva Prasad Kasiviswanathan, Aaditya Ramdas:

Differentially Private Conditional Independence Testing. 3700-3708 - Kevin Scaman, Mathieu Even, Batiste Le Bars, Laurent Massoulié:

Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles. 3709-3717 - Amirhesam Abedsoltan, Parthe Pandit, Luis Rademacher, Mikhail Belkin:

On the Nyström Approximation for Preconditioning in Kernel Machines. 3718-3726 - Fahad Kamran, Maggie Makar, Jenna Wiens:

Learning to Rank for Optimal Treatment Allocation Under Resource Constraints. 3727-3735 - Alex Oesterling, Jiaqi Ma, Flávio P. Calmon, Himabindu Lakkaraju:

Fair Machine Unlearning: Data Removal while Mitigating Disparities. 3736-3744 - Yipei Wang, Xiaoqian Wang:

On the Effect of Key Factors in Spurious Correlation: A theoretical Perspective. 3745-3753 - Maosheng Yang, Viacheslav Borovitskiy, Elvin Isufi:

Hodge-Compositional Edge Gaussian Processes. 3754-3762 - Asterios Tsiourvas, Wei Sun, Georgia Perakis:

Manifold-Aligned Counterfactual Explanations for Neural Networks. 3763-3771 - Jialun Zhang, Richard Y. Zhang, Hong-Ming Chiu:

Fast and Accurate Estimation of Low-Rank Matrices from Noisy Measurements via Preconditioned Non-Convex Gradient Descent. 3772-3780 - Chaitanya Murti, Dhruva Kashyap, Chiranjib Bhattacharyya:

LP-based Construction of DC Decompositions for Efficient Inference of Markov Random Fields. 3781-3789 - Achille O. R. Nazaret, Claudia Shi, David M. Blei:

On the Misspecification of Linear Assumptions in Synthetic Controls. 3790-3798 - Daniel Carmon, Amir Yehudayoff, Roi Livni:

The sample complexity of ERMs in stochastic convex optimization. 3799-3807 - Amey P. Pasarkar, Adji Bousso Dieng:

Cousins Of The Vendi Score: A Family Of Similarity-Based Diversity Metrics For Science And Machine Learning. 3808-3816 - Liwei Wang, Xinru Liu, Aaron Smith, Aguemon Y. Atchadé:

On cyclical MCMC sampling. 3817-3825 - Joshua John Ward, Xianli Zeng, Guang Cheng:

FairRR: Pre-Processing for Group Fairness through Randomized Response. 3826-3834 - Yin Liu, Sam Davanloo Tajbakhsh:

Fitting ARMA Time Series Models without Identification: A Proximal Approach. 3835-3843 - Daoping Wu, Suhas Gundimeda, Shaoshuai Mou, Christopher J. Quinn:

Unsupervised Change Point Detection in Multivariate Time Series. 3844-3852 - Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, Aymeric Dieuleveut:

Proving Linear Mode Connectivity of Neural Networks via Optimal Transport. 3853-3861 - Yinuo Ren, Tesi Xiao, Tanmay Gangwani, Anshuka Rangi, Holakou Rahmanian, Lexing Ying, Subhajit Sanyal:

Multi-objective Optimization via Wasserstein-Fisher-Rao Gradient Flow. 3862-3870 - Thomas Guilmeau

, Nicola Branchini, Emilie Chouzenoux, Victor Elvira:
Adaptive importance sampling for heavy-tailed distributions via α-divergence minimization. 3871-3879 - Mehdi Jafarnia-Jahromi, Rahul Jain, Ashutosh Nayyar:

A Bayesian Learning Algorithm for Unknown Zero-sum Stochastic Games with an Arbitrary Opponent. 3880-3888 - Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng:

Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games. 3889-3897 - Osama A. Hanna, Merve Karakas, Lin Yang, Christina Fragouli:

Multi-Agent Bandit Learning through Heterogeneous Action Erasure Channels. 3898-3906 - Jianwei Shen, Jason Pacheco:

Efficient Variational Sequential Information Control. 3907-3915 - Jonathan Colaço Carr, Prakash Panangaden, Doina Precup:

Conditions on Preference Relations that Guarantee the Existence of Optimal Policies. 3916-3924 - Jiaqi Zhang, Kirankumar Shiragur, Caroline Uhler:

Membership Testing in Markov Equivalence Classes via Independence Queries. 3925-3933 - Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth:

Functional Flow Matching. 3934-3942 - Kirk C. Bansak, Elisabeth Paulson, Dominik Rothenhäusler:

Learning Under Random Distributional Shifts. 3943-3951 - Kaiting Liu, Zahra Atashgahi, Ghada Sokar, Mykola Pechenizkiy, Decebal Constantin Mocanu:

Supervised Feature Selection via Ensemble Gradient Information from Sparse Neural Networks. 3952-3960 - Katherine Tsai, Stephen R. Pfohl, Olawale Salaudeen, Nicole Chiou, Matt J. Kusner, Alexander D'Amour, Sanmi Koyejo, Arthur Gretton:

Proxy Methods for Domain Adaptation. 3961-3969 - Kyra Gan, Esmaeil Keyvanshokooh, Xueqing Liu, Susan A. Murphy:

Contextual Bandits with Budgeted Information Reveal. 3970-3978 - Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton:

Timing as an Action: Learning When to Observe and Act. 3979-3987 - Wei Shen, Minhui Huang, Jiawei Zhang, Cong Shen:

Stochastic Smoothed Gradient Descent Ascent for Federated Minimax Optimization. 3988-3996 - Ziyu Xu, Aaditya Ramdas:

Online multiple testing with e-values. 3997-4005 - Rayen Tan, Rohan Ghuge, Viswanath Nagarajan:

Informative Path Planning with Limited Adaptivity. 4006-4014 - Kai Lion, Lorenzo Noci, Thomas Hofmann, Gregor Bachmann:

How Good is a Single Basin? 4015-4023 - Philip Jordan, Anas Barakat, Niao He:

Independent Learning in Constrained Markov Potential Games. 4024-4032 - N. Benjamin Erichson, Soon Hoe Lim, Winnie Xu, Francisco Utrera, Ziang Cao, Michael W. Mahoney:

NoisyMix: Boosting Model Robustness to Common Corruptions. 4033-4041 - Mohammad Mahmudul Alam, Edward Raff, Stella Biderman, Tim Oates, James Holt:

Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection. 4042-4050 - Georg Pichler, Marco Romanelli, Divya Prakash Manivannan, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg:

On the (In)feasibility of ML Backdoor Detection as an Hypothesis Testing Problem. 4051-4059 - Tyler Maunu

, Martin Molina-Fructuoso:
Acceleration and Implicit Regularization in Gaussian Phase Retrieval. 4060-4068 - Miruna Oprescu, Andrew Bennett, Nathan Kallus:

Low-rank MDPs with Continuous Action Spaces. 4069-4077 - Alex Zhai, Dee Guo, Sreenivas Gollapudi, Kostas Kollias, Daniel Delling:

Deep Learning-Based Alternative Route Computation. 4078-4086 - Oren Wright, Yorie Nakahira, José M. F. Moura:

An Analytic Solution to Covariance Propagation in Neural Networks. 4087-4095 - Avrim Blum, Princewill Okoroafor, Aadirupa Saha, Kevin M. Stangl:

On the Vulnerability of Fairness Constrained Learning to Malicious Noise. 4096-4104 - Siyuan Xu, Yucheng Wang, Mingzhou Fan, Byung-Jun Yoon, Xiaoning Qian:

Uncertainty-aware Continuous Implicit Neural Representations for Remote Sensing Object Counting. 4105-4113 - Kenny Falkær Olsen, Rasmus M. Hoeegh Lindrup, Morten Mørup:

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators. 4114-4122 - Emmanouil-Vasileios Vlatakis-Gkaragkounis, Angeliki Giannou, Yudong Chen, Qiaomin Xie:

Stochastic Methods in Variational Inequalities: Ergodicity, Bias and Refinements. 4123-4131 - Philipp Michael Faller, Leena C. Vankadara, Atalanti-Anastasia Mastakouri, Francesco Locatello, Dominik Janzing:

Self-Compatibility: Evaluating Causal Discovery without Ground Truth. 4132-4140 - Marcelo Pereyra, Julián Tachella:

Equivariant bootstrapping for uncertainty quantification in imaging inverse problems. 4141-4149 - Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Shuang Song, Abhradeep Thakurta, Li Zhang:

Private Learning with Public Features. 4150-4158 - Alessio Mazzetto:

An Improved Algorithm for Learning Drifting Discrete Distributions. 4159-4167 - Jinyeong Chae, Donghwa Kim, Kwanseok Kim, Doyeon Lee, Sangho Lee, Seongsu Ha, Jonghwan Mun, Wooyoung Kang, Byungseok Roh, Joonseok Lee:

Towards a Complete Benchmark on Video Moment Localization. 4168-4176 - Neharika Jali, Guannan Qu, Weina Wang, Gauri Joshi:

Efficient Reinforcement Learning for Routing Jobs in Heterogeneous Queueing Systems. 4177-4185 - Mohammad Reza Karimi, Ya-Ping Hsieh, Andreas Krause:

Sinkhorn Flow as Mirror Flow: A Continuous-Time Framework for Generalizing the Sinkhorn Algorithm. 4186-4194 - Zongyu Dai, Emily J. Getzen, Qi Long:

SADI: Similarity-Aware Diffusion Model-Based Imputation for Incomplete Temporal EHR Data. 4195-4203 - Daniil Tiapkin

, Nikita Morozov, Alexey Naumov, Dmitry P. Vetrov:
Generative Flow Networks as Entropy-Regularized RL. 4213-4221 - Yitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang, Mark Coates:

Multi-resolution Time-Series Transformer for Long-term Forecasting. 4222-4230 - Kritkorn Karntikoon, Yiheng Shen, Sreenivas Gollapudi, Kostas Kollias, Aaron Schild, Ali Kemal Sinop:

First Passage Percolation with Queried Hints. 4231-4239 - Daogao Liu, Hilal Asi:

User-level Differentially Private Stochastic Convex Optimization: Efficient Algorithms with Optimal Rates. 4240-4248 - Hamza Giaffar, Camille E. Rullán Buxó, Mikio Aoi

:
The Effective Number of Shared Dimensions Between Paired Datasets. 4249-4257 - Zhishang Luo, Truong Son Hy, Puoya Tabaghi, Michaël Defferrard, Elahe Rezaei, Ryan Carey, W. Rhett Davis, Rajeev Jain, Yusu Wang:

DE-HNN: An effective neural model for Circuit Netlist representation. 4258-4266 - Yuling Yao, Bruno Régaldo-Saint Blancard, Justin Domke:

Simulation-Based Stacking. 4267-4275 - Ziyu Gong, Ben Usman, Han Zhao, David I. Inouye:

Towards Practical Non-Adversarial Distribution Matching. 4276-4284 - Ilker Demirel, Edward De Brouwer, Zeshan M. Hussain, Michael Oberst

, Anthony Philippakis, David A. Sontag:
Benchmarking Observational Studies with Experimental Data under Right-Censoring. 4285-4293 - Vasileios Kalantzis, Shashanka Ubaru, Chai Wah Wu, Georgios Kollias, Lior Horesh:

Asynchronous Randomized Trace Estimation. 4294-4302 - George Z. Li, Dung Nguyen, Anil Vullikanti:

Computing epidemic metrics with edge differential privacy. 4303-4311 - Declan McNamara, Jackson Loper, Jeffrey Regier:

Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational Inference. 4312-4320 - Jeremy McMahan, Xiaojin Zhu:

Anytime-Constrained Reinforcement Learning. 4321-4329 - Tao Wen, Elynn Y. Chen, Yuzhou Chen:

Tensor-view Topological Graph Neural Network. 4330-4338 - Yewon Byun, Dylan Sam, Michael Oberst

, Zachary C. Lipton, Bryan Wilder:
Auditing Fairness under Unobserved Confounding. 4339-4347 - Samson J. Koelle, Hanyu Zhang, Octavian-Vlad Murad, Marina Meila:

Consistency of Dictionary-Based Manifold Learning. 4348-4356 - Yuxin Chang, Alex J. Boyd, Padhraic Smyth:

Probabilistic Modeling for Sequences of Sets in Continuous-Time. 4357-4365 - Hui Lan, Vasilis Syrgkanis:

Causal Q-Aggregation for CATE Model Selection. 4366-4374 - Kaiqi Zhao, Ming Zhao:

Self-Supervised Quantization-Aware Knowledge Distillation. 4375-4383 - Xiang Meng, Wenyu Chen, Riade Benbaki, Rahul Mazumder:

FALCON: FLOP-Aware Combinatorial Optimization for Neural Network Pruning. 4384-4392 - Yinglong Guo, Shaohan Li, Gilad Lerman:

The effect of Leaky ReLUs on the training and generalization of overparameterized networks. 4393-4401 - Hongchang Gao:

Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence Rate. 4402-4410 - Ruichen Jiang, Parameswaran Raman, Shoham Sabach, Aryan Mokhtari, Mingyi Hong, Volkan Cevher:

Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence Rate. 4411-4419 - Wesley Suttle, Vipul Kumar Sharma, Krishna Chaitanya Kosaraju, Seetharaman Sivaranjani, Ji Liu, Vijay Gupta, Brian M. Sadler:

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems. 4420-4428 - Jhanvi Garg, Xianyang Zhang, Quan Zhou:

Soft-constrained Schrödinger Bridge: a Stochastic Control Approach. 4429-4437 - Naitong Chen, Trevor Campbell:

Coreset Markov chain Monte Carlo. 4438-4446 - Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Rémi Munos, Mark Rowland, Michal Valko, Daniele Calandriello:

A General Theoretical Paradigm to Understand Learning from Human Preferences. 4447-4455 - Myrl G. Marmarelis, Fred Morstatter, Aram Galstyan, Greg Ver Steeg:

Policy Learning for Localized Interventions from Observational Data. 4456-4464 - Yinuo Ren, Chao Ma, Lexing Ying:

Understanding the Generalization Benefits of Late Learning Rate Decay. 4465-4473 - Junghyun Lee, Se-Young Yun, Kwang-Sung Jun:

Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion. 4474-4482 - Yutong Wang, Rishi Sonthalia, Wei Hu:

Near-Interpolators: Rapid Norm Growth and the Trade-Off between Interpolation and Generalization. 4483-4491 - Manav Kant, Eric Y. Ma, Andrei Staicu, Leonard J. Schulman, Spencer Gordon:

Identifiability of Product of Experts Models. 4492-4500 - Haobo Chen, Gregory W. Wornell, Yuheng Bu:

Gibbs-Based Information Criteria and the Over-Parameterized Regime. 4501-4509 - Bhagyashree Puranik, Ahmad Beirami, Yao Qin, Upamanyu Madhow:

Improving Robustness via Tilted Exponential Layer: A Communication-Theoretic Perspective. 4510-4518 - Yuyang Deng, Junyuan Hong, Jiayu Zhou, Mehrdad Mahdavi:

On the Generalization Ability of Unsupervised Pretraining. 4519-4527 - Waleed Mustafa, Philipp Liznerski, Antoine Ledent, Dennis Wagner, Puyu Wang, Marius Kloft:

Non-vacuous Generalization Bounds for Adversarial Risk in Stochastic Neural Networks. 4528-4536 - Charles Xu

, Laney Goldman, Valentina Guo, Benjamin Hollander-Bodie, Maedee Trank-Greene, Ian Adelstein, Edward De Brouwer, Rex Ying, Smita Krishnaswamy, Michael Perlmutter:
BLIS-Net: Classifying and Analyzing Signals on Graphs. 4537-4545 - Rohan Deb, Aadirupa Saha, Arindam Banerjee:

Think Before You Duel: Understanding Complexities of Preference Learning under Constrained Resources. 4546-4554 - Houston Warren, Fabio Ramos:

Fast Fourier Bayesian Quadrature. 4555-4563 - Yu Inatsu, Shion Takeno, Hiroyuki Hanada, Kazuki Iwata, Ichiro Takeuchi:

Bounding Box-based Multi-objective Bayesian Optimization of Risk Measures under Input Uncertainty. 4564-4572 - Cyrus Cousins, I. Elizabeth Kumar, Suresh Venkatasubramanian:

To Pool or Not To Pool: Analyzing the Regularizing Effects of Group-Fair Training on Shared Models. 4573-4581 - Lingkai Kong, Haotian Sun, Yuchen Zhuang, Haorui Wang, Wenhao Mu, Chao Zhang:

Two Birds with One Stone: Enhancing Uncertainty Quantification and Interpretability with Graph Functional Neural Process. 4582-4590 - Taemin Heo, Chandrajit Bajaj:

Sample Efficient Learning of Factored Embeddings of Tensor Fields. 4591-4599 - Miguel Biron-Lattes, Nikola Surjanovic, Saifuddin Syed, Trevor Campbell, Alexandre Bouchard-Côté:

autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithm. 4600-4608 - Zirui Yan, Dennis Wei, Dmitriy A. Katz, Prasanna Sattigeri, Ali Tajer:

Causal Bandits with General Causal Models and Interventions. 4609-4617 - Nathan Wycoff:

Surrogate Active Subspaces for Jump-Discontinuous Functions. 4618-4626 - Ahmet Alacaoglu, Stephen J. Wright:

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochastic Objective and Constraints. 4627-4635 - Mishfad Shaikh Veedu, Deepjyoti Deka, Murti V. Salapaka:

Information Theoretically Optimal Sample Complexity of Learning Dynamical Directed Acyclic Graphs. 4636-4644 - Seongwoo Lim, Won Jo, Joohyung Lee, Jaesik Choi:

Pathwise Explanation of ReLU Neural Networks. 4645-4653 - John Hood, Aaron J. Schein:

The ALℓ0CORE Tensor Decomposition for Sparse Count Data. 4654-4662 - Feihu Huang, Xinrui Wang, Junyi Li, Songcan Chen:

Adaptive Federated Minimax Optimization with Lower Complexities. 4663-4671 - Ronghao Ni, Zinan Lin, Shuaiqi Wang, Giulia Fanti:

Mixture-of-Linear-Experts for Long-term Time Series Forecasting. 4672-4680 - Ali Mortazavi, Junhao Lin, Nishant A. Mehta:

On the price of exact truthfulness in incentive-compatible online learning with bandit feedback: a regret lower bound for WSU-UX. 4681-4689 - Princewill Okoroafor, Robert D. Kleinberg, Wen Sun:

Faster Recalibration of an Online Predictor via Approachability. 4690-4698 - Min Cheng, Ruida Zhou, P. R. Kumar, Chao Tian:

Provable Policy Gradient Methods for Average-Reward Markov Potential Games. 4699-4707 - Mizhaan Prajit Maniyar, Prashanth L. A., Akash Mondal, Shalabh Bhatnagar:

A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning. 4708-4716 - Juanwu Lu, Wei Zhan, Masayoshi Tomizuka, Yeping Hu:

Towards Generalizable and Interpretable Motion Prediction: A Deep Variational Bayes Approach. 4717-4725 - Muhammed Emrullah Ildiz, Zhe Zhao, Samet Oymak:

Understanding Inverse Scaling and Emergence in Multitask Representation Learning. 4726-4734 - Aakash Sunil Lahoti, Spandan Senapati, Ketan Rajawat, Alec Koppel:

Sharpened Lazy Incremental Quasi-Newton Method. 4735-4743 - Yinan Li, Chicheng Zhang:

Efficient Active Learning Halfspaces with Tsybakov Noise: A Non-convex Optimization Approach. 4744-4752 - Anqi Mao, Mehryar Mohri, Yutao Zhong:

Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class Abstention. 4753-4761 - Steven Braun, Martin Mundt, Kristian Kersting:

Deep Classifier Mimicry without Data Access. 4762-4770 - Velibor Bojkovic, Srinivas Anumasa, Giulia De Masi, Bin Gu, Huan Xiong:

Data Driven Threshold and Potential Initialization for Spiking Neural Networks. 4771-4779 - Barak Battash, Lior Wolf, Ofir Lindenbaum:

Revisiting the Noise Model of Stochastic Gradient Descent. 4780-4788 - Masahiro Nakano, Hiroki Sakuma

, Ryo Nishikimi, Ryohei Shibue, Takashi Sato, Tomoharu Iwata, Kunio Kashino:
Warped Diffusion for Latent Differentiation Inference. 4789-4797 - Nikita Tsoy, Anna Mihalkova, Teodora N. Todorova, Nikola Konstantinov:

Provable Mutual Benefits from Federated Learning in Privacy-Sensitive Domains. 4798-4806 - Andrea Ceni, Andrea Cossu, Maximilian W. Stölzle, Jingyue Liu, Cosimo Della Santina, Davide Bacciu, Claudio Gallicchio:

Random Oscillators Network for Time Series Processing. 4807-4815 - Shuqi Liu, Yuzhou Cao, Qiaozhen Zhang, Lei Feng, Bo An:

Mitigating Underfitting in Learning to Defer with Consistent Losses. 4816-4824 - Yuzhou Cao, Lei Feng, Bo An:

Consistent Hierarchical Classification with A Generalized Metric. 4825-4833 - Enea Monzio Compagnoni, Antonio Orvieto, Hans Kersting, Frank Proske, Aurélien Lucchi:

SDEs for Minimax Optimization. 4834-4842 - Sayak Ray Chowdhury, Xingyu Zhou, Nagarajan Natarajan:

Differentially Private Reward Estimation with Preference Feedback. 4843-4851 - Nikita Morozov, Denis Rakitin, Oleg Desheulin, Dmitry P. Vetrov, Kirill Struminsky:

Differentiable Rendering with Reparameterized Volume Sampling. 4852-4860 - Florian Hübler, Junchi Yang, Xiang Li, Niao He:

Parameter-Agnostic Optimization under Relaxed Smoothness. 4861-4869 - Ruslan Nazykov, Aleksandr Shestakov

, Vladimir Solodkin, Aleksandr Beznosikov, Gauthier Gidel, Alexander V. Gasnikov:
Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special Cases. 4870-4878 - Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:

Efficient Conformal Prediction under Data Heterogeneity. 4879-4887 - Sanmitra Ghosh, Paul Birrell, Daniela De Angelis:

Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs. 4888-4896 - Sarah Mameche, Jilles Vreeken, David Kaltenpoth:

Identifying Confounding from Causal Mechanism Shifts. 4897-4905 - Ben Batten, Mehran Hosseini, Alessio Lomuscio:

Tight Verification of Probabilistic Robustness in Bayesian Neural Networks. 4906-4914 - Aytijhya Saha, Aaditya Ramdas:

Testing exchangeability by pairwise betting. 4915-4923

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














