default search action
Liang Sun 0001
Person information
- affiliation: Alibaba Group, Bellevue, WA, USA
- affiliation (former): Arizona State University, Tempe, AZ, USA
Other persons with the same name
- Liang Sun — disambiguation page
- Liang Sun 0002 — New Mexico State University, Mechanical and Aerospace Engineering, Las Cruces, NM, USA (and 3 more)
- Liang Sun 0003 — Dalian University of Technology, College of Computer Science and Technology, China (and 2 more)
- Liang Sun 0004 — University of Science and Technology Beijing, School of Automation and Electrical Engineering, China (and 1 more)
- Liang Sun 0005 — USDA Agricultural Research Service, Washington, DC, USA (and 2 more)
- Liang Sun 0006 — Dalian University of Technology, School of Software, China
- Liang Sun 0007 — Beihang University, School of Electronic and Information Engineering, Beijing, China (and 3 more)
- Liang Sun 0008 — China University of Mining and Technology, Xuzhou, China
- Liang Sun 0009 — Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j7]Nan Lu, Shu Liu, Qingsong Wen, Qiming Chen, Liang Sun, Yi Wang:
Federated Domain Separation for Distributed Forecasting of Non-IID Household Loads. IEEE Trans. Smart Grid 15(4): 4271-4283 (2024) - [c55]Chaoli Zhang, Yingying Zhang, Lanshu Peng, Qingsong Wen, Yiyuan Yang, Chong-Jiong Fan, Minqi Jiang, Lunting Fan, Liang Sun:
Advancing Multivariate Time Series Anomaly Detection: A Comprehensive Benchmark with Real-World Data from Alibaba Cloud. CIKM 2024: 5410-5414 - [c54]Zhiqiang Zhou, Linxiao Yang, Qingsong Wen, Liang Sun:
RobustTSVar: A Robust Time Series Variance Estimation Algorithm. ICASSP 2024: 161-165 - [c53]Kexin Zhang, Qingsong Wen, Chaoli Zhang, Liang Sun, Yong Liu:
Skip-Step Contrastive Predictive Coding for Time Series Anomaly Detection. ICASSP 2024: 7065-7069 - [c52]Hao Cheng, Qingsong Wen, Yang Liu, Liang Sun:
RobustTSF: Towards Theory and Design of Robust Time Series Forecasting with Anomalies. ICLR 2024 - [c51]Shikai Fang, Qingsong Wen, Yingtao Luo, Shandian Zhe, Liang Sun:
BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition. ICML 2024 - [c50]Linxiao Yang, Yunze Tong, Xinyue Gu, Liang Sun:
Explain Temporal Black-Box Models via Functional Decomposition. ICML 2024 - [c49]Rui Ren, Jingbang Yang, Linxiao Yang, Xinyue Gu, Liang Sun:
SLIM: a Scalable Light-weight Root Cause Analysis for Imbalanced Data in Microservice. ICSE Companion 2024: 328-330 - [c48]Binqing Wu, Weiqi Chen, Wengwei Wang, Bingqing Peng, Liang Sun, Ling Chen:
WeatherGNN: Exploiting Meteo- and Spatial-Dependencies for Local Numerical Weather Prediction Bias-Correction. IJCAI 2024: 2433-2441 - [c47]Linxiao Yang, Jingbang Yang, Liang Sun:
Efficient Decision Rule List Learning via Unified Sequence Submodular Optimization. KDD 2024: 3758-3769 - [c46]Jiehui Zhou, Linxiao Yang, Xingyu Liu, Xinyue Gu, Liang Sun, Wei Chen:
CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect. KDD 2024: 4619-4630 - [c45]Ziqing Ma, Wenwei Wang, Tian Zhou, Chao Chen, Bingqing Peng, Liang Sun, Rong Jin:
FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting. KDD 2024: 5532-5543 - [c44]Qiang Li, Yiqiao Sun, Linsey Pang, Liang Sun, Qingsong Wen:
Stable Synthetic Control with Anomaly Detection for Causal Inference. SDM 2024: 770-778 - [i46]Hao Cheng, Qingsong Wen, Yang Liu, Liang Sun:
RobustTSF: Towards Theory and Design of Robust Time Series Forecasting with Anomalies. CoRR abs/2402.02032 (2024) - [i45]Peisong Niu, Tian Zhou, Xue Wang, Liang Sun, Rong Jin:
Attention as Robust Representation for Time Series Forecasting. CoRR abs/2402.05370 (2024) - [i44]Ziqing Ma, Wenwei Wang, Tian Zhou, Chao Chen, Bingqing Peng, Liang Sun, Rong Jin:
FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting. CoRR abs/2402.05823 (2024) - [i43]Yanjun Zhao, Tian Zhou, Chao Chen, Liang Sun, Yi Qian, Rong Jin:
Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization for Enhanced Time Series Forecasting. CoRR abs/2402.05830 (2024) - [i42]Yifan Zhang, Weiqi Chen, Zhaoyang Zhu, Dalin Qin, Liang Sun, Xue Wang, Qingsong Wen, Zhang Zhang, Liang Wang, Rong Jin:
Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt. CoRR abs/2403.14949 (2024) - [i41]Rui Ren, Jingbang Yang, Linxiao Yang, Xinyue Gu, Liang Sun:
SLIM: a Scalable Light-weight Root Cause Analysis for Imbalanced Data in Microservice. CoRR abs/2405.20848 (2024) - [i40]Jiehui Zhou, Linxiao Yang, Xingyu Liu, Xinyue Gu, Liang Sun, Wei Chen:
CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect. CoRR abs/2407.01004 (2024) - [i39]Dalin Qin, Yehui Li, Weiqi Chen, Zhaoyang Zhu, Qingsong Wen, Liang Sun, Pierre Pinson, Yi Wang:
Evolving Multi-Scale Normalization for Time Series Forecasting under Distribution Shifts. CoRR abs/2409.19718 (2024) - [i38]Yangyang Guo, Yanjun Zhao, Sizhe Dang, Tian Zhou, Liang Sun, Yi Qian:
Less is more: Embracing sparsity and interpolation with Esiformer for time series forecasting. CoRR abs/2410.05726 (2024) - [i37]Peiyuan Liu, Tian Zhou, Liang Sun, Rong Jin:
Mitigating Time Discretization Challenges with WeatherODE: A Sandwich Physics-Driven Neural ODE for Weather Forecasting. CoRR abs/2410.06560 (2024) - [i36]Zhixian Wang, Linxiao Yang, Liang Sun, Qingsong Wen, Yi Wang:
Task-oriented Time Series Imputation Evaluation via Generalized Representers. CoRR abs/2410.06652 (2024) - 2023
- [j6]Zhaoyang Zhu, Weiqi Chen, Rui Xia, Tian Zhou, Peisong Niu, Bingqing Peng, Wenwei Wang, Hengbo Liu, Ziqing Ma, Xinyue Gu, Jin Wang, Qiming Chen, Linxiao Yang, Qingsong Wen, Liang Sun:
Energy forecasting with robust, flexible, and explainable machine learning algorithms. AI Mag. 44(4): 377-393 (2023) - [j5]Dalin Qin, Chenxi Wang, Qingsong Wen, Weiqi Chen, Liang Sun, Yi Wang:
Personalized Federated DARTS for Electricity Load Forecasting of Individual Buildings. IEEE Trans. Smart Grid 14(6): 4888-4901 (2023) - [c43]Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong Wen, Liang Sun, Peng Li, Zhimin Tang:
AHPA: Adaptive Horizontal Pod Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes. AAAI 2023: 15621-15629 - [c42]Zhaoyang Zhu, Weiqi Chen, Rui Xia, Tian Zhou, Peisong Niu, Bingqing Peng, Wenwei Wang, Hengbo Liu, Ziqing Ma, Qingsong Wen, Liang Sun:
eForecaster: Unifying Electricity Forecasting with Robust, Flexible, and Explainable Machine Learning Algorithms. AAAI 2023: 15630-15638 - [c41]Yanjun Zhao, Ziqing Ma, Tian Zhou, Mengni Ye, Liang Sun, Yi Qian:
GCformer: An Efficient Solution for Accurate and Scalable Long-Term Multivariate Time Series Forecasting. CIKM 2023: 3464-3473 - [c40]Hengbo Liu, Ziqing Ma, Linxiao Yang, Tian Zhou, Rui Xia, Yi Wang, Qingsong Wen, Liang Sun:
SADI: A Self-Adaptive Decomposed Interpretable Framework for Electric Load Forecasting Under Extreme Events. ICASSP 2023: 1-5 - [c39]Qingsong Wen, Linxiao Yang, Liang Sun:
Robust Dominant Periodicity Detection for Time Series with Missing Data. ICASSP 2023: 1-5 - [c38]Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, Liang Sun:
Transformers in Time Series: A Survey. IJCAI 2023: 6778-6786 - [c37]Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, Liang Sun:
DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection. KDD 2023: 3033-3045 - [c36]Linxiao Yang, Rui Ren, Xinyue Gu, Liang Sun:
Interactive Generalized Additive Model and Its Applications in Electric Load Forecasting. KDD 2023: 5393-5403 - [c35]Yifan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling. NeurIPS 2023 - [c34]Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin:
One Fits All: Power General Time Series Analysis by Pretrained LM. NeurIPS 2023 - [i35]Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin:
Power Time Series Forecasting by Pretrained LM. CoRR abs/2302.11939 (2023) - [i34]Qingsong Wen, Linxiao Yang, Liang Sun:
Robust Dominant Periodicity Detection for Time Series with Missing Data. CoRR abs/2303.03553 (2023) - [i33]Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong Wen, Liang Sun, Peng Li, Zhimin Tang:
AHPA: Adaptive Horizontal Pod Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes. CoRR abs/2303.03640 (2023) - [i32]Zhixian Wang, Qingsong Wen, Chaoli Zhang, Liang Sun, Yi Wang:
DiffLoad: Uncertainty Quantification in Load Forecasting with Diffusion Model. CoRR abs/2306.01001 (2023) - [i31]Hengbo Liu, Ziqing Ma, Linxiao Yang, Tian Zhou, Rui Xia, Yi Wang, Qingsong Wen, Liang Sun:
SaDI: A Self-adaptive Decomposed Interpretable Framework for Electric Load Forecasting under Extreme Events. CoRR abs/2306.08299 (2023) - [i30]Yanjun Zhao, Ziqing Ma, Tian Zhou, Liang Sun, Mengni Ye, Yi Qian:
GCformer: An Efficient Framework for Accurate and Scalable Long-Term Multivariate Time Series Forecasting. CoRR abs/2306.08325 (2023) - [i29]Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, Liang Sun:
DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection. CoRR abs/2306.10347 (2023) - [i28]Zhixian Wang, Qingsong Wen, Chaoli Zhang, Liang Sun, Leandro Von Krannichfeldt, Yi Wang:
Benchmarks and Custom Package for Electrical Load Forecasting. CoRR abs/2307.07191 (2023) - [i27]Shikai Fang, Qingsong Wen, Shandian Zhe, Liang Sun:
BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition. CoRR abs/2308.14906 (2023) - [i26]Yifan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan:
OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling. CoRR abs/2309.12659 (2023) - [i25]Binqing Wu, Weiqi Chen, Wengwei Wang, Bingqing Peng, Liang Sun, Ling Chen:
WeatherGNN: Exploiting Complicated Relationships in Numerical Weather Prediction Bias Correction. CoRR abs/2310.05517 (2023) - [i24]Linxiao Yang, Rui Ren, Xinyue Gu, Liang Sun:
Interactive Generalized Additive Model and Its Applications in Electric Load Forecasting. CoRR abs/2310.15662 (2023) - [i23]Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin:
One Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors. CoRR abs/2311.14782 (2023) - [i22]Chao Chen, Tian Zhou, Yanjun Zhao, Hui Liu, Liang Sun, Rong Jin:
SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting. CoRR abs/2312.03406 (2023) - [i21]Pengwei Liu, Wenwei Wang, Bingqing Peng, Binqing Wu, Liang Sun:
DSAF: A Dual-Stage Adaptive Framework for Numerical Weather Prediction Downscaling. CoRR abs/2312.12476 (2023) - 2022
- [c33]Yan Li, Rui Xia, Chunchen Liu, Liang Sun:
A Hybrid Causal Structure Learning Algorithm for Mixed-Type Data. AAAI 2022: 7435-7443 - [c32]Chaoli Zhang, Tian Zhou, Qingsong Wen, Liang Sun:
TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis. CIKM 2022: 2497-2507 - [c31]Xiaomin Song, Qingsong Wen, Yan Li, Liang Sun:
Robust Time Series Dissimilarity Measure for Outlier Detection and Periodicity Detection. CIKM 2022: 4510-4514 - [c30]Chaoli Zhang, Zhiqiang Zhou, Yingying Zhang, Linxiao Yang, Kai He, Qingsong Wen, Liang Sun:
Netrca: An Effective Network Fault Cause Localization Algorithm. ICASSP 2022: 9316-9320 - [c29]Huajie Qian, Qingsong Wen, Liang Sun, Jing Gu, Qiulin Niu, Zhimin Tang:
RobustScaler: QoS-Aware Autoscaling for Complex Workloads. ICDE 2022: 2762-2775 - [c28]Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, Rong Jin:
FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. ICML 2022: 27268-27286 - [c27]Weiqi Chen, Wenwei Wang, Bingqing Peng, Qingsong Wen, Tian Zhou, Liang Sun:
Learning to Rotate: Quaternion Transformer for Complicated Periodical Time Series Forecasting. KDD 2022: 146-156 - [c26]Qingsong Wen, Linxiao Yang, Tian Zhou, Liang Sun:
Robust Time Series Analysis and Applications: An Industrial Perspective. KDD 2022: 4836-4837 - [c25]Chenxiao Yang, Qitian Wu, Qingsong Wen, Zhiqiang Zhou, Liang Sun, Junchi Yan:
Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment. NeurIPS 2022 - [c24]Tian Zhou, Ziqing Ma, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin:
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting. NeurIPS 2022 - [i20]Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, Rong Jin:
FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. CoRR abs/2201.12740 (2022) - [i19]Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, Liang Sun:
Transformers in Time Series: A Survey. CoRR abs/2202.07125 (2022) - [i18]Chaoli Zhang, Zhiqiang Zhou, Yingying Zhang, Linxiao Yang, Kai He, Qingsong Wen, Liang Sun:
NetRCA: An Effective Network Fault Cause Localization Algorithm. CoRR abs/2202.11269 (2022) - [i17]Huajie Qian, Qingsong Wen, Liang Sun, Jing Gu, Qiulin Niu, Zhimin Tang:
RobustScaler: QoS-Aware Autoscaling for Complex Workloads. CoRR abs/2204.07197 (2022) - [i16]Tian Zhou, Ziqing Ma, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin:
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting. CoRR abs/2205.08897 (2022) - [i15]Xiaomin Song, Qingsong Wen, Yan Li, Liang Sun:
Robust Time Series Dissimilarity Measure for Outlier Detection and Periodicity Detection. CoRR abs/2206.02956 (2022) - [i14]Fan Yang, Kai He, Linxiao Yang, Hongxia Du, Jingbang Yang, Bo Yang, Liang Sun:
Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach. CoRR abs/2206.03718 (2022) - [i13]Tian Zhou, Jianqing Zhu, Xue Wang, Ziqing Ma, Qingsong Wen, Liang Sun, Rong Jin:
TreeDRNet: A Robust Deep Model for Long Term Time Series Forecasting. CoRR abs/2206.12106 (2022) - [i12]Chaoli Zhang, Tian Zhou, Qingsong Wen, Liang Sun:
TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis. CoRR abs/2210.09693 (2022) - [i11]Chenxiao Yang, Qitian Wu, Qingsong Wen, Zhiqiang Zhou, Liang Sun, Junchi Yan:
Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment. CoRR abs/2210.13005 (2022) - 2021
- [c23]Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting Fan, Min Ke:
CloudRCA: A Root Cause Analysis Framework for Cloud Computing Platforms. CIKM 2021: 4373-4382 - [c22]Qingyang Xu, Qingsong Wen, Liang Sun:
Two-Stage Framework for Seasonal Time Series Forecasting. ICASSP 2021: 3530-3534 - [c21]Linxiao Yang, Qingsong Wen, Bo Yang, Liang Sun:
A Robust and Efficient Multi-Scale Seasonal-Trend Decomposition. ICASSP 2021: 5085-5089 - [c20]Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, Huan Xu:
Time Series Data Augmentation for Deep Learning: A Survey. IJCAI 2021: 4653-4660 - [c19]Fan Yang, Kai He, Linxiao Yang, Hongxia Du, Jingbang Yang, Bo Yang, Liang Sun:
Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach. NeurIPS 2021: 27890-27902 - [c18]Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, Huan Xu:
RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity Detection. SIGMOD Conference 2021: 2328-2337 - [i10]Qingyang Xu, Qingsong Wen, Liang Sun:
Two-Stage Framework for Seasonal Time Series Forecasting. CoRR abs/2103.02144 (2021) - [i9]Linxiao Yang, Qingsong Wen, Bo Yang, Liang Sun:
A Robust and Efficient Multi-Scale Seasonal-Trend Decomposition. CoRR abs/2109.08800 (2021) - [i8]Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting Fan, Min Ke:
CloudRCA: A Root Cause Analysis Framework for Cloud Computing Platforms. CoRR abs/2111.03753 (2021) - 2020
- [c17]Qingsong Wen, Zhengzhi Ma, Liang Sun:
On Robust Variance Filtering and Change of Variance Detection. ICASSP 2020: 3012-3016 - [c16]Qingsong Wen, Zhe Zhang, Yan Li, Liang Sun:
Fast RobustSTL: Efficient and Robust Seasonal-Trend Decomposition for Time Series with Complex Patterns. KDD 2020: 2203-2213 - [i7]Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, Huan Xu:
RobustPeriod: Time-Frequency Mining for Robust Multiple Periodicities Detection. CoRR abs/2002.09535 (2020) - [i6]Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang, Liang Sun, Huan Xu:
RobustTAD: Robust Time Series Anomaly Detection via Decomposition and Convolutional Neural Networks. CoRR abs/2002.09545 (2020) - [i5]Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, Huan Xu:
Time Series Data Augmentation for Deep Learning: A Survey. CoRR abs/2002.12478 (2020)
2010 – 2019
- 2019
- [c15]Ming Lin, Shuang Qiu, Jieping Ye, Xiaomin Song, Qi Qian, Liang Sun, Shenghuo Zhu, Rong Jin:
Which Factorization Machine Modeling Is Better: A Theoretical Answer with Optimal Guarantee. AAAI 2019: 4312-4319 - [c14]Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, Shenghuo Zhu:
RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series. AAAI 2019: 5409-5416 - [c13]Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Jian Tan:
RobustTrend: A Huber Loss with a Combined First and Second Order Difference Regularization for Time Series Trend Filtering. IJCAI 2019: 3856-3862 - [c12]Ming Lin, Xiaomin Song, Qi Qian, Hao Li, Liang Sun, Shenghuo Zhu, Rong Jin:
Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement. KDD 2019: 2838-2847 - [i4]Ming Lin, Shuang Qiu, Jieping Ye, Xiaomin Song, Qi Qian, Liang Sun, Shenghuo Zhu, Rong Jin:
Which Factorization Machine Modeling is Better: A Theoretical Answer with Optimal Guarantee. CoRR abs/1901.11149 (2019) - [i3]Ming Lin, Xiaomin Song, Qi Qian, Hao Li, Liang Sun, Shenghuo Zhu, Rong Jin:
Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement. CoRR abs/1906.01095 (2019) - [i2]Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Jian Tan:
RobustTrend: A Huber Loss with a Combined First and Second Order Difference Regularization for Time Series Trend Filtering. CoRR abs/1906.03751 (2019) - 2018
- [i1]Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, Shenghuo Zhu:
RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series. CoRR abs/1812.01767 (2018) - 2011
- [b1]Liang Sun:
Multi-Label Dimensionality Reduction. Arizona State University, Tempe, USA, 2011 - [j4]Liang Sun, Shuiwang Ji, Jieping Ye:
Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(1): 194-200 (2011) - [c11]Jun Liu, Liang Sun, Jieping Ye:
Projection onto A Nonnegative Max-Heap. NIPS 2011: 487-495 - 2010
- [j3]Shuai Huang, Jing Li, Liang Sun, Jieping Ye, Adam Fleisher, Teresa Wu, Kewei Chen, Eric Reiman:
Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage 50(3): 935-949 (2010) - [c10]Liang Sun, Betul Ceran, Jieping Ye:
A scalable two-stage approach for a class of dimensionality reduction techniques. KDD 2010: 313-322
2000 – 2009
- 2009
- [c9]Liang Sun, Shuiwang Ji, Jieping Ye:
A least squares formulation for a class of generalized eigenvalue problems in machine learning. ICML 2009: 977-984 - [c8]Liang Sun, Shuiwang Ji, Shipeng Yu, Jieping Ye:
On the Equivalence between Canonical Correlation Analysis and Orthonormalized Partial Least Squares. IJCAI 2009: 1230-1235 - [c7]Zheng Zhao, Liang Sun, Shipeng Yu, Huan Liu, Jieping Ye:
Multiclass Probabilistic Kernel Discriminant Analysis. IJCAI 2009: 1363-1368 - [c6]Liang Sun, Rinkal Patel, Jun Liu, Kewei Chen, Teresa Wu, Jing Li, Eric Reiman, Jieping Ye:
Mining brain region connectivity for alzheimer's disease study via sparse inverse covariance estimation. KDD 2009: 1335-1344 - [c5]Shuai Huang, Jing Li, Liang Sun, Jun Liu, Teresa Wu, Kewei Chen, Adam Fleisher, Eric Reiman, Jieping Ye:
Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data. NIPS 2009: 808-816 - [c4]Liang Sun, Jun Liu, Jianhui Chen, Jieping Ye:
Efficient Recovery of Jointly Sparse Vectors. NIPS 2009: 1812-1820 - 2008
- [j2]Shuiwang Ji, Liang Sun, Rong Jin, Sudhir Kumar, Jieping Ye:
Automated annotation of Drosophila gene expression patterns using a controlled vocabulary. Bioinform. 24(17): 1881-1888 (2008) - [j1]Liang Sun, Shuiwang Ji, Jieping Ye:
Adaptive diffusion kernel learning from biological networks for protein function prediction. BMC Bioinform. 9 (2008) - [c3]Liang Sun, Shuiwang Ji, Jieping Ye:
A least squares formulation for canonical correlation analysis. ICML 2008: 1024-1031 - [c2]Liang Sun, Shuiwang Ji, Jieping Ye:
Hypergraph spectral learning for multi-label classification. KDD 2008: 668-676 - [c1]Shuiwang Ji, Liang Sun, Rong Jin, Jieping Ye:
Multi-label Multiple Kernel Learning. NIPS 2008: 777-784