


default search action
NIPS 2008: Vancouver, British Columbia, Canada
- Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou:

Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008. Curran Associates, Inc. 2009 - Daniel E. Acuna, Paul R. Schrater:

Structure Learning in Human Sequential Decision-Making. 1-8 - Ryan Prescott Adams, Iain Murray, David J. C. MacKay:

The Gaussian Process Density Sampler. 9-16 - Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, Nitin Motgi, Seung-Taek Park, Raghu Ramakrishnan, Scott Roy, Joe Zachariah:

Online Models for Content Optimization. 17-24 - Nir Ailon:

Reconciling Real Scores with Binary Comparisons: A New Logistic Based Model for Ranking. 25-32 - Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, Eric P. Xing:

Mixed Membership Stochastic Blockmodels. 33-40 - Ijaz Akhter, Yaser Sheikh, Sohaib Khan, Takeo Kanade:

Nonrigid Structure from Motion in Trajectory Space. 41-48 - Norm Aleks, Stuart Russell, Michael G. Madden, Diane Morabito, Kristan Staudenmayer, Mitchell J. Cohen, Geoffrey T. Manley:

Probabilistic detection of short events, with application to critical care monitoring. 49-56 - Mauricio A. Álvarez, Neil D. Lawrence:

Sparse Convolved Gaussian Processes for Multi-output Regression. 57-64 - Massih-Reza Amini, François Laviolette, Nicolas Usunier:

A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning. 65-72 - Cédric Archambeau, Francis R. Bach:

Sparse probabilistic projections. 73-80 - Arthur U. Asuncion, Padhraic Smyth, Max Welling:

Asynchronous Distributed Learning of Topic Models. 81-88 - Peter Auer, Thomas Jaksch, Ronald Ortner:

Near-optimal Regret Bounds for Reinforcement Learning. 89-96 - Joseph L. Austerweil, Thomas L. Griffiths:

Analyzing human feature learning as nonparametric Bayesian inference. 97-104 - Francis R. Bach:

Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning. 105-112 - J. Andrew Bagnell, David M. Bradley:

Differentiable Sparse Coding. 113-120 - Shai Ben-David, Margareta Ackerman:

Measures of Clustering Quality: A Working Set of Axioms for Clustering. 121-128 - Pietro Berkes

, Frank D. Wood, Jonathan W. Pillow:
Characterizing neural dependencies with copula models. 129-136 - Patrice Bertail, Stéphan Clémençon, Nicolas Vayatis:

On Bootstrapping the ROC Curve. 137-144 - Steffen Bickel, Christoph Sawade, Tobias Scheffer:

Transfer Learning by Distribution Matching for Targeted Advertising. 145-152 - Matthew B. Blaschko, Arthur Gretton:

Learning Taxonomies by Dependence Maximization. 153-160 - Phil Blunsom, Trevor Cohn, Miles Osborne:

Bayesian Synchronous Grammar Induction. 161-168 - Matthew M. Botvinick, James An:

Goal-directed decision making in prefrontal cortex: a computational framework. 169-176 - Alexandre Bouchard-Côté, Michael I. Jordan, Dan Klein:

Efficient Inference in Phylogenetic InDel Trees. 177-184 - Jordan L. Boyd-Graber, David M. Blei:

Syntactic Topic Models. 185-192 - Alexander Braunstein, Zhi Wei, Shane T. Jensen, Jon D. McAuliffe:

A spatially varying two-sample recombinant coalescent, with applications to HIV escape response. 193-200 - Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba Szepesvári:

Online Optimization in X-Armed Bandits. 201-208 - Charles F. Cadieu, Bruno A. Olshausen:

Learning Transformational Invariants from Natural Movies. 209-216 - Ben Calderhead, Mark A. Girolami, Neil D. Lawrence:

Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes. 217-224 - Guangzhi Cao, Charles A. Bouman:

Covariance Estimation for High Dimensional Data Vectors Using the Sparse Matrix Transform. 225-232 - Peter Carbonetto, Mark Schmidt, Nando de Freitas:

An interior-point stochastic approximation method and an L1-regularized delta rule. 233-240 - Rui M. Castro, Charles Kalish, Robert D. Nowak, Ruichen Qian, Timothy T. Rogers, Xiaojin Zhu:

Human Active Learning. 241-248 - Giovanni Cavallanti, Nicolò Cesa-Bianchi, Claudio Gentile:

Linear Classification and Selective Sampling Under Low Noise Conditions. 249-256 - Volkan Cevher, Marco F. Duarte, Chinmay Hegde, Richard G. Baraniuk:

Sparse Signal Recovery Using Markov Random Fields. 257-264 - Kian Ming Adam Chai, Christopher K. I. Williams, Stefan Klanke, Sethu Vijayakumar:

Multi-task Gaussian Process Learning of Robot Inverse Dynamics. 265-272 - Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, Eli Upfal:

Mortal Multi-Armed Bandits. 273-280 - Olivier Chapelle, Chuong B. Do, Quoc V. Le, Alexander J. Smola, Choon Hui Teo:

Tighter Bounds for Structured Estimation. 281-288 - Kamalika Chaudhuri, Claire Monteleoni:

Privacy-preserving logistic regression. 289-296 - Silvia Chiappa, Jens Kober, Jan Peters:

Using Bayesian Dynamical Systems for Motion Template Libraries. 297-304 - Stéphan Clémençon, Nicolas Vayatis:

Empirical performance maximization for linear rank statistics. 305-312 - Stéphan Clémençon, Nicolas Vayatis:

Overlaying classifiers: a practical approach for optimal ranking. 313-320 - Shay B. Cohen, Kevin Gimpel, Noah A. Smith:

Logistic Normal Priors for Unsupervised Probabilistic Grammar Induction. 321-328 - Kevyn Collins-Thompson:

Estimating Robust Query Models with Convex Optimization. 329-336 - Pierre-Arnaud Coquelin, Romain Deguest, Rémi Munos:

Particle Filter-based Policy Gradient in POMDPs. 337-344 - Koby Crammer, Mark Dredze, Fernando Pereira:

Exact Convex Confidence-Weighted Learning. 345-352 - Wenyuan Dai, Yuqiang Chen, Gui-Rong Xue, Qiang Yang, Yong Yu:

Translated Learning: Transfer Learning across Different Feature Spaces. 353-360 - Sanmay Das, Malik Magdon-Ismail:

Adapting to a Market Shock: Optimal Sequential Market-Making. 361-368 - Peter Dayan:

Load and Attentional Bayes. 369-376 - Ofer Dekel:

From Online to Batch Learning with Cutoff-Averaging. 377-384 - Dotan Di Castro, Dmitry Volkinshtein, Ron Meir:

Temporal Difference Based Actor Critic Learning - Convergence and Neural Implementation. 385-392 - Doug Downey, Oren Etzioni:

Look Ma, No Hands: Analyzing the Monotonic Feature Abstraction for Text Classification. 393-400 - Miroslav Dudík, Steven J. Phillips:

Generative and Discriminative Learning with Unknown Labeling Bias. 401-408 - Laurent El Ghaoui, Assane Gueye:

A Convex Upper Bound on the Log-Partition Function for Binary Distributions. 409-416 - Gal Elidan, Stephen Gould:

Learning Bounded Treewidth Bayesian Networks. 417-424 - Dominik Endres, Peter Földiák:

Interpreting the neural code with Formal Concept Analysis. 425-432 - Lev Faivishevsky, Jacob Goldberger:

ICA based on a Smooth Estimation of the Differential Entropy. 433-440 - Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, Shie Mannor:

Regularized Policy Iteration. 441-448 - Alyson K. Fletcher, Sundeep Rangan, Vivek K. Goyal:

Resolution Limits of Sparse Coding in High Dimensions. 449-456 - Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:

Nonparametric Bayesian Learning of Switching Linear Dynamical Systems. 457-464 - Paolo Frasconi, Andrea Passerini:

Predicting the Geometry of Metal Binding Sites from Protein Sequence. 465-472 - Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:

Characteristic Kernels on Groups and Semigroups. 473-480 - C. C. Alan Fung, K. Y. Michael Wong, Si Wu:

Tracking Changing Stimuli in Continuous Attractor Neural Networks. 481-488 - Pierre Garrigues, Laurent El Ghaoui:

An Homotopy Algorithm for the Lasso with Online Observations. 489-496 - Jan Gasthaus, Frank D. Wood, Dilan Görür, Yee Whye Teh:

Dependent Dirichlet Process Spike Sorting. 497-504 - Sharad Goel, John Langford, Alexander L. Strehl:

Predictive Indexing for Fast Search. 505-512 - Vicenç Gómez, Andreas Kaltenbrunner, Vicente López, Hilbert J. Kappen:

Self-organization using synaptic plasticity. 513-520 - Dilan Görür, Yee Whye Teh:

An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering. 521-528 - Hans Peter Graf, Srihari Cadambi, Igor Durdanovic, Venkata Jakkula, Murugan Sankaradass, Eric Cosatto, Srimat T. Chakradhar:

A Massively Parallel Digital Learning Processor. 529-536 - Yves Grandvalet, Alain Rakotomamonjy, Joseph Keshet, Stéphane Canu:

Support Vector Machines with a Reject Option. 537-544 - Alex Graves, Jürgen Schmidhuber:

Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. 545-552 - Thomas L. Griffiths, Christopher G. Lucas, Joseph Jay Williams, Michael L. Kalish:

Modeling human function learning with Gaussian processes. 553-560 - Moritz Grosse-Wentrup:

Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing. 561-568 - Yuhong Guo:

Supervised Exponential Family Principal Component Analysis via Convex Optimization. 569-576 - Abhinav Gupta, Jianbo Shi, Larry S. Davis:

A "Shape Aware" Model for semi-supervised Learning of Objects and its Context. 577-584 - Ralf M. Haefner, Bruce G. Cumming:

An improved estimator of Variance Explained in the presence of noise. 585-592 - Adrian Haith, Carl P. T. Jackson, R. Chris Miall, Sethu Vijayakumar:

Unifying the Sensory and Motor Components of Sensorimotor Adaptation. 593-600 - Jihun Ham, Daniel D. Lee:

Extended Grassmann Kernels for Subspace-Based Learning. 601-608 - Zaïd Harchaoui, Francis R. Bach, Eric Moulines:

Kernel Change-point Analysis. 609-616 - Stefan Haufe, Vadim V. Nikulin, Andreas Ziehe, Klaus-Robert Müller, Guido Nolte:

Estimating vector fields using sparse basis field expansions. 617-624 - Xuming He, Richard S. Zemel:

Learning Hybrid Models for Image Annotation with Partially Labeled Data. 625-632 - Geremy Heitz, Gal Elidan, Benjamin Packer, Daphne Koller:

Shape-Based Object Localization for Descriptive Classification. 633-640 - Geremy Heitz, Stephen Gould, Ashutosh Saxena, Daphne Koller:

Cascaded Classification Models: Combining Models for Holistic Scene Understanding. 641-648 - Mark Herbster, Guy Lever, Massimiliano Pontil:

Online Prediction on Large Diameter Graphs. 649-656 - Mark Herbster, Massimiliano Pontil, Sergio Rojas Galeano:

Fast Prediction on a Tree. 657-664 - N. Jeremy Hill, Jason Farquhar, Suzanna Martens, Felix Bießmann, Bernhard Schölkopf:

Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance. 665-672 - Michael P. Holmes, Alexander G. Gray, Charles Lee Isbell Jr.:

QUIC-SVD: Fast SVD Using Cosine Trees. 673-680 - Xiaodi Hou, Liqing Zhang:

Dynamic visual attention: searching for coding length increments. 681-688 - Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, Bernhard Schölkopf:

Nonlinear causal discovery with additive noise models. 689-696 - Jim C. Huang, Brendan J. Frey:

Structured ranking learning using cumulative distribution networks. 697-704 - Ling Huang, Donghui Yan, Michael I. Jordan, Nina Taft:

Spectral Clustering with Perturbed Data. 705-712 - Juan Huo, Zhijun Yang, Alan F. Murray:

Bio-inspired Real Time Sensory Map Realignment in a Robotic Barn Owl. 713-720 - Zakria Hussain, John Shawe-Taylor:

Theory of matching pursuit. 721-728 - Quentin J. M. Huys, Joshua T. Vogelstein, Peter Dayan:

Psychiatry: Insights into depression through normative decision-making models. 729-736 - Michael Isard, John MacCormick, Kannan Achan:

Continuously-adaptive discretization for message-passing algorithms. 737-744 - Laurent Jacob, Francis R. Bach, Jean-Philippe Vert:

Clustered Multi-Task Learning: A Convex Formulation. 745-752 - Srikanth Jagabathula, Devavrat Shah:

Inferring rankings under constrained sensing. 753-760 - Prateek Jain, Brian Kulis, Inderjit S. Dhillon, Kristen Grauman:

Online Metric Learning and Fast Similarity Search. 761-768 - Viren Jain, H. Sebastian Seung:

Natural Image Denoising with Convolutional Networks. 769-776 - Shuiwang Ji, Liang Sun, Rong Jin, Jieping Ye:

Multi-label Multiple Kernel Learning. 777-784 - Matt Jones, Michael C. Mozer, Sachiko Kinoshita:

Optimal Response Initiation: Why Recent Experience Matters. 785-792 - Sham M. Kakade, Karthik Sridharan, Ambuj Tewari:

On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization. 793-800 - Sham M. Kakade, Ambuj Tewari:

On the Generalization Ability of Online Strongly Convex Programming Algorithms. 801-808 - Takafumi Kanamori, Shohei Hido, Masashi Sugiyama:

Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection. 809-816 - Kentaro Katahira, Jun Nishikawa, Kazuo Okanoya, Masato Okada:

Extracting State Transition Dynamics from Multiple Spike Trains with Correlated Poisson HMM. 817-824 - Charles Kemp, Fei Xu:

An ideal observer model of infant object perception. 825-832 - JooSeuk Kim, Clayton D. Scott:

Performance analysis for L_2 kernel classification. 833-840 - Tae-Kyun Kim

, Roberto Cipolla:
MCBoost: Multiple Classifier Boosting for Perceptual Co-clustering of Images and Visual Features. 841-856 - Jens Kober, Jan Peters:

Policy Search for Motor Primitives in Robotics. 849-856 - Christoph Kolodziejski, Bernd Porr, Minija Tamosiunaite, Florentin Wörgötter:

On the asymptotic equivalence between differential Hebbian and temporal difference learning using a local third factor. 857-864 - Nikos Komodakis, Nikos Paragios, Georgios Tziritas:

Clustering via LP-based Stabilities. 865-872 - Lukas Kroc, Ashish Sabharwal, Bart Selman:

Counting Solution Clusters in Graph Coloring Problems Using Belief Propagation. 873-880 - Pavel P. Kuksa, Pai-Hsi Huang, Vladimir Pavlovic

:
Scalable Algorithms for String Kernels with Inexact Matching. 881-888 - M. Pawan Kumar, Philip H. S. Torr:

Improved Moves for Truncated Convex Models. 889-896 - Simon Lacoste-Julien, Fei Sha, Michael I. Jordan:

DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification. 897-904 - John Langford, Lihong Li, Tong Zhang:

Sparse Online Learning via Truncated Gradient. 905-912 - Longin Jan Latecki, ChengEn Lu, Marc Sobel, Xiang Bai:

Multiscale Random Fields with Application to Contour Grouping. 913-920 - Jonathan Le Roux, Alain de Cheveigné, Lucas C. Parra:

Adaptive Template Matching with Shift-Invariant Semi-NMF. 921-928 - Dongryeol Lee, Alexander G. Gray:

Fast High-dimensional Kernel Summations Using the Monte Carlo Multipole Method. 929-936 - Roger Levy, Florencia Reali, Thomas L. Griffiths:

Modeling the effects of memory on human online sentence processing with particle filters. 937-944 - Jeremy Lewi, Robert J. Butera, David M. Schneider, Sarah M. N. Woolley, Liam Paninski:

Designing neurophysiology experiments to optimally constrain receptive field models along parametric submanifolds. 945-952 - Ping Li, Kenneth Ward Church, Trevor Hastie:

One sketch for all: Theory and Application of Conditional Random Sampling. 953-960 - Yen-Yu Lin, Tyng-Luh Liu, Chiou-Shann Fuh:

Dimensionality Reduction for Data in Multiple Feature Representations. 961-968 - Han Liu, John D. Lafferty, Larry A. Wasserman:

Nonparametric regression and classification with joint sparsity constraints. 969-976 - Philip M. Long, Rocco A. Servedio:

Adaptive Martingale Boosting. 977-984 - Christopher G. Lucas, Thomas L. Griffiths, Fei Xu, Christine Fawcett:

A rational model of preference learning and choice prediction by children. 985-992 - Elliot A. Ludvig, Richard S. Sutton, Eric Verbeek, E. James Kehoe:

A computational model of hippocampal function in trace conditioning. 993-1000 - Gediminas Luksys, Carmen Sandi, Wulfram Gerstner:

Stress, noradrenaline, and realistic prediction of mouse behaviour using reinforcement learning. 1001-1008 - Siwei Lyu, Eero P. Simoncelli:

Reducing statistical dependencies in natural signals using radial Gaussianization. 1009-1016 - Lester W. Mackey:

Deflation Methods for Sparse PCA. 1017-1024 - Markus Maier, Ulrike von Luxburg, Matthias Hein:

Influence of graph construction on graph-based clustering measures. 1025-1032 - Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman:

Supervised Dictionary Learning. 1033-1040 - Yishay Mansour, Mehryar Mohri, Afshin Rostamizadeh:

Domain Adaptation with Multiple Sources. 1041-1048 - Hamed Masnadi-Shirazi, Nuno Vasconcelos:

On the Design of Loss Functions for Classification: theory, robustness to outliers, and SavageBoost. 1049-1056 - Julian J. McAuley, Tibério S. Caetano, Alexander J. Smola:

Robust Near-Isometric Matching via Structured Learning of Graphical Models. 1057-1064 - Mahdi Milani Fard, Joelle Pineau:

MDPs with Non-Deterministic Policies. 1065-1072 - Tom Minka, John M. Winn:

Gates. 1073-1080 - Andriy Mnih, Geoffrey E. Hinton:

A Scalable Hierarchical Distributed Language Model. 1081-1088 - Shakir Mohamed, Katherine A. Heller, Zoubin Ghahramani:

Bayesian Exponential Family PCA. 1089-1096 - Mehryar Mohri, Afshin Rostamizadeh:

Rademacher Complexity Bounds for Non-I.I.D. Processes. 1097-1104 - Joris M. Mooij, Hilbert J. Kappen:

Bounds on marginal probability distributions. 1105-1112 - Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C. Raykar, Ramani Duraiswami, Larry S. Davis:

Automatic online tuning for fast Gaussian summation. 1113-1120 - Mehmet K. Muezzinoglu, Alexander Vergara, Ramón Huerta, Thomas Nowotny, Nikolai F. Rulkov, Henry D. I. Abarbanel, Allen I. Selverston, Mikhail I. Rabinovich:

Artificial Olfactory Brain for Mixture Identification. 1121-1128 - Indraneel Mukherjee, David M. Blei:

Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation. 1129-1136 - Iain Murray, Ruslan Salakhutdinov:

Evaluating probabilities under high-dimensional latent variable models. 1137-1144 - Vinod Nair, Geoffrey E. Hinton:

Implicit Mixtures of Restricted Boltzmann Machines. 1145-1152 - Rama Natarajan, Iain Murray, Ladan Shams, Richard S. Zemel:

Characterizing response behavior in multisensory perception with conflicting cues. 1153-1160 - Sahand N. Negahban, Martin J. Wainwright:

Phase transitions for high-dimensional joint support recovery. 1161-1168 - Bernhard Nessler, Michael Pfeiffer, Wolfgang Maass:

Hebbian Learning of Bayes Optimal Decisions. 1169-1176 - Gerhard Neumann, Jan Peters:

Fitted Q-iteration by Advantage Weighted Regression. 1177-1184 - Minh Hoai Nguyen, Fernando De la Torre:

Robust Kernel Principal Component Analysis. 1185-1192 - Duy Nguyen-Tuong, Matthias W. Seeger, Jan Peters:

Local Gaussian Process Regression for Real Time Online Model Learning. 1193-1200 - Richard Nock, Frank Nielsen:

On the Efficient Minimization of Classification Calibrated Surrogates. 1201-1208 - Ali Nouri, Michael L. Littman:

Multi-resolution Exploration in Continuous Spaces. 1209-1216 - Guillaume Obozinski, Martin J. Wainwright, Michael I. Jordan:

High-dimensional support union recovery in multivariate regression. 1217-1224 - Masafumi Oizumi, Toshiyuki Ishii, Kazuya Ishibashi, Toshihiko Hosoya, Masato Okada:

A general framework for investigating how far the decoding process in the brain can be simplified. 1225-1232 - Arno Onken, Steffen Grünewälder, Matthias H. J. Munk, Klaus Obermayer:

Modeling Short-term Noise Dependence of Spike Counts in Macaque Prefrontal Cortex. 1233-1240 - Manfred Opper, Ulrich Paquet, Ole Winther:

Improving on Expectation Propagation. 1241-1248 - Jean-Philippe Pellet, André Elisseeff:

Finding Latent Causes in Causal Networks: an Efficient Approach Based on Markov Blankets. 1249-1256 - Fernando Pérez-Cruz:

Estimation of Information Theoretic Measures for Continuous Random Variables. 1257-1264 - Marek Petrik, Bruno Scherrer:

Biasing Approximate Dynamic Programming with a Lower Discount Factor. 1265-1272 - Adam Ponzi, Jeff Wickens:

Cell Assemblies in Large Sparse Inhibitory Networks of Biologically Realistic Spiking Neurons. 1273-1280 - Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang, Hang Li:

Global Ranking Using Continuous Conditional Random Fields. 1281-1288 - Novi Quadrianto, Le Song, Alexander J. Smola:

Kernelized Sorting. 1289-1296 - Gerald T. Quon, Yee Whye Teh, Esther T. Chan, Timothy R. Hughes, Michael Brudno, Quaid Morris:

A mixture model for the evolution of gene expression in non-homogeneous datasets. 1297-1304 - Maxim Raginsky, Svetlana Lazebnik, Rebecca Willett, Jorge G. Silva:

Near-minimax recursive density estimation on the binary hypercube. 1305-1312 - Ali Rahimi, Benjamin Recht:

Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning. 1313-1320 - Piyush Rai, Hal Daumé III:

The Infinite Hierarchical Factor Regression Model. 1321-1328 - Pradeep Ravikumar, Garvesh Raskutti, Martin J. Wainwright, Bin Yu:

Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of l1-regularized MLE. 1329-1336 - Pradeep Ravikumar, Vincent Q. Vu, Bin Yu, Thomas Naselaris, Kendrick N. Kay, Jack L. Gallant:

Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images. 1337-1344 - Debajyoti Ray, Brooks King-Casas, P. Read Montague, Peter Dayan:

Bayesian Model of Behaviour in Economic Games. 1345-1352 - Jeremy Reynolds, Michael C. Mozer:

Temporal Dynamics of Cognitive Control. 1353-1360 - John W. Roberts, Russ Tedrake:

Signal-to-Noise Ratio Analysis of Policy Gradient Algorithms. 1361-1368 - Joshua W. Robinson, Alexander J. Hartemink:

Non-stationary dynamic Bayesian networks. 1369-1376 - Daniel M. Roy, Yee Whye Teh:

The Mondrian Process. 1377-1384 - Paul Ruvolo, Ian R. Fasel, Javier R. Movellan:

Optimization on a Budget: A Reinforcement Learning Approach. 1385-1392 - Kate Saenko, Trevor Darrell:

Unsupervised Learning of Visual Sense Models for Polysemous Words. 1393-1400 - Ted Sandler, John Blitzer, Partha Pratim Talukdar, Lyle H. Ungar:

Regularized Learning with Networks of Features. 1401-1408 - Tanya Schmah, Geoffrey E. Hinton, Richard S. Zemel, Steven L. Small, Stephen C. Strother:

Generative versus discriminative training of RBMs for classification of fMRI images. 1409-1416 - Nicol N. Schraudolph, Dmitry Kamenetsky:

Efficient Exact Inference in Planar Ising Models. 1417-1424 - Benjamin Schrauwen, Lars Buesing, Robert Legenstein:

On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing. 1425-1432 - Gabriele Beate Schweikert, Christian Widmer, Bernhard Schölkopf, Gunnar Rätsch:

An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. 1433-1440 - Matthias W. Seeger, Hannes Nickisch, Rolf Pohmann, Bernhard Schölkopf:

Bayesian Experimental Design of Magnetic Resonance Imaging Sequences. 1441-1448 - Mohak Shah:

Risk Bounds for Randomized Sample Compressed Classifiers. 1449-1456 - Shai Shalev-Shwartz, Sham M. Kakade:

Mind the Duality Gap: Logarithmic regret algorithms for online optimization. 1457-1464 - Ohad Shamir, Naftali Tishby:

On the Reliability of Clustering Stability in the Large Sample Regime. 1465-1472 - Chunhua Shen, Alan H. Welsh, Lei Wang:

PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning. 1473-1480 - Pannagadatta K. Shivaswamy, Tony Jebara:

Relative Margin Machines. 1481-1488 - Lavi Shpigelman, Hagai Lalazar, Eilon Vaadia:

Kernel-ARMA for Hand Tracking and Brain-Machine interfacing During 3D Motor Control. 1489-1496 - Özgür Simsek, Andrew G. Barto:

Skill Characterization Based on Betweenness. 1497-1504 - Vikas Sindhwani, Jianying Hu, Aleksandra Mojsilovic:

Regularized Co-Clustering with Dual Supervision. 1505-1512 - Aarti Singh, Robert D. Nowak, Xiaojin Zhu:

Unlabeled data: Now it helps, now it doesn't. 1513-1520 - Fabian H. Sinz, Matthias Bethge:

The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction. 1521-1528 - Andrew Smith, Xiaoming Huo, Hongyuan Zha:

Convergence and Rate of Convergence of a Manifold-Based Dimension Reduction Algorithm. 1529-1536 - David A. Sontag, Amir Globerson, Tommi S. Jaakkola:

Clusters and Coarse Partitions in LP Relaxations. 1537-1544 - Karthik Sridharan, Shai Shalev-Shwartz, Nathan Srebro:

Fast Rates for Regularized Objectives. 1545-1552 - Praveen Srinivasan, Liming Wang, Jianbo Shi:

Grouping Contours Via a Related Image. 1553-1560 - Florian Steinke, Matthias Hein:

Non-parametric Regression Between Manifolds. 1561-1568 - Ingo Steinwart, Andreas Christmann:

Sparsity of SVMs that use the epsilon-insensitive loss. 1569-1576 - Matthew J. Streeter, Daniel Golovin:

An Online Algorithm for Maximizing Submodular Functions. 1577-1584 - Erik B. Sudderth, Michael I. Jordan:

Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes. 1585-1592 - Ilya Sutskever, Geoffrey E. Hinton:

Using matrices to model symbolic relationship. 1593-1600 - Ilya Sutskever, Geoffrey E. Hinton, Graham W. Taylor:

The Recurrent Temporal Restricted Boltzmann Machine. 1601-1608 - Richard S. Sutton, Csaba Szepesvári, Hamid Reza Maei:

A Convergent O(n) Temporal-difference Algorithm for Off-policy Learning with Linear Function Approximation. 1609-1616 - Erik Talvitie, Satinder Singh:

Simple Local Models for Complex Dynamical Systems. 1617-1624 - Jennifer Tam, Jirí Simsa, Sean Hyde, Luis von Ahn:

Breaking Audio CAPTCHAs. 1625-1632 - Yik-Cheung Tam, Tanja Schultz:

Correlated Bigram LSA for Unsupervised Language Model Adaptation. 1633-1640 - Michael Tangermann, Matthias Krauledat, Konrad Grzeska, Max Sagebaum, Benjamin Blankertz, Carmen Vidaurre, Klaus-Robert Müller:

Playing Pinball with non-invasive BCI. 1641-1648 - Jonathan Taylor, Doina Precup, Prakash Panangaden:

Bounding Performance Loss in Approximate MDP Homomorphisms. 1649-1656 - Tran The Truyen, Dinh Q. Phung, Hung Bui, Svetha Venkatesh:

Hierarchical Semi-Markov Conditional Random Fields for Recursive Sequential Data. 1657-1664 - Robert E. Tillman, David Danks, Clark Glymour:

Integrating Locally Learned Causal Structures with Overlapping Variables. 1665-1672 - Jo-Anne Ting, Mrinal Kalakrishnan, Sethu Vijayakumar, Stefan Schaal:

Bayesian Kernel Shaping for Learning Control. 1673-1680 - Michalis K. Titsias, Neil D. Lawrence, Magnus Rattray:

Efficient Sampling for Gaussian Process Inference using Control Variables. 1681-1688 - Michael T. Todd, Yael Niv, Jonathan D. Cohen:

Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement. 1689-1696 - Jurgen Van Gael, Yee Whye Teh, Zoubin Ghahramani:

The Infinite Factorial Hidden Markov Model. 1697-1704 - Sudheendra Vijayanarasimhan, Kristen Grauman:

Multi-Level Active Prediction of Useful Image Annotations for Recognition. 1705-1712 - Christian Walder, Bernhard Schölkopf:

Diffeomorphic Dimensionality Reduction. 1713-1720 - Yang Wang, Greg Mori:

Learning a discriminative hidden part model for human action recognition. 1721-1728 - Yizao Wang, Jean-Yves Audibert, Rémi Munos:

Algorithms for Infinitely Many-Armed Bandits. 1729-1736 - Kilian Q. Weinberger, Olivier Chapelle:

Large Margin Taxonomy Embedding for Document Categorization. 1737-1744 - Daphna Weinshall, Hynek Hermansky, Alon Zweig, Jie Luo, Holly Brügge Jimison, Frank W. Ohl, Misha Pavel:

Beyond Novelty Detection: Incongruent Events, when General and Specific Classifiers Disagree. 1745-1752 - Yair Weiss, Antonio Torralba, Robert Fergus:

Spectral Hashing. 1753-1760 - Ydo Wexler, Christopher Meek:

MAS: a multiplicative approximation scheme for probabilistic inference. 1761-1768 - Klaus Wimmer, Marcel Stimberg, Robert Martin, Lars Schwabe, Jorge Mariño, James Schummers, David C. Lyon, Mriganka Sur, Klaus Obermayer:

Dependence of Orientation Tuning on Recurrent Excitation and Inhibition in a Network Model of V1. 1769-1776 - David P. Wipf, Julia P. Owen, Hagai Attias, Kensuke Sekihara, Srikantan S. Nagarajan:

Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG. 1777-1784 - Qiang Wu, Sayan Mukherjee, Feng Liang:

Localized Sliced Inverse Regression. 1785-1792 - Shuang Wu, Hongjing Lu, Alan L. Yuille:

Model selection and velocity estimation using novel priors for motion patterns. 1793-1800 - Huan Xu, Constantine Caramanis, Shie Mannor:

Robust Regression and Lasso. 1801-1808 - Jing Xu, Thomas L. Griffiths:

How memory biases affect information transmission: A rational analysis of serial reproduction. 1809-1816 - Peng Xu, Timothy K. Horiuchi, Pamela Abshire:

Short-Term Depression in VLSI Stochastic Synapse. 1817-1824 - Zenglin Xu, Rong Jin, Irwin King, Michael R. Lyu:

An Extended Level Method for Efficient Multiple Kernel Learning. 1825-1832 - Benjamin Yackley, Eduardo Corona, Terran Lane:

Bayesian Network Score Approximation using a Metagraph Kernel. 1833-1840 - Yoshihiro Yamanishi:

Supervised Bipartite Graph Inference. 1841-1848 - Haixuan Yang, Irwin King, Michael R. Lyu:

Learning with Consistency between Inductive Functions and Kernels. 1849-1856 - Liu Yang, Rong Jin, Rahul Sukthankar:

Semi-supervised Learning with Weakly-Related Unlabeled Data: Towards Better Text Categorization. 1857-1864 - Zhi Yang, Qi Zhao, Wentai Liu:

Spike Feature Extraction Using Informative Samples. 1865-1872 - Angela J. Yu, Jonathan D. Cohen:

Sequential effects: Superstition or rational behavior? 1873-1880 - Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, Maneesh Sahani:

Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. 1881-1888 - Kai Yu, Wei Xu, Yihong Gong:

Deep Learning with Kernel Regularization for Visual Recognition. 1889-1896 - Chao Yuan, Claus Neubauer:

Variational Mixture of Gaussian Process Experts. 1897-1904 - Luke S. Zettlemoyer, Brian Milch, Leslie Pack Kaelbling:

Multi-Agent Filtering with Infinitely Nested Beliefs. 1905-1912 - Liang Zhang, Deepak Agarwal:

Fast Computation of Posterior Mode in Multi-Level Hierarchical Models. 1913-1920 - Tong Zhang:

Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models. 1921-1928 - Tong Zhang:

Multi-stage Convex Relaxation for Learning with Sparse Regularization. 1929-1936 - Xinhua Zhang, Le Song, Arthur Gretton, Alexander J. Smola:

Kernel Measures of Independence for non-iid Data. 1937-1944 - Yi Zhang, Jeff G. Schneider, Artur Dubrawski:

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text. 1945-1952 - Deli Zhao, Xiaoou Tang:

Cyclizing Clusters via Zeta Function of a Graph. 1953-1960 - Zhengdong Lu, Todd K. Leen, Jeffrey A. Kaye:

Hierarchical Fisher Kernels for Longitudinal Data. 1961-1968 - Zhihua Zhang, Michael I. Jordan, Dit-Yan Yeung:

Posterior Consistency of the Silverman g-prior in Bayesian Model Choice. 1969-1976 - Jun Zhu, Eric P. Xing, Bo Zhang:

Partially Observed Maximum Entropy Discrimination Markov Networks. 1977-1984 - Leo Zhu, Yuanhao Chen, Yuan Lin, Chenxi Lin, Alan L. Yuille:

Recursive Segmentation and Recognition Templates for 2D Parsing. 1985-1992 - Shenghuo Zhu, Kai Yu, Yihong Gong:

Stochastic Relational Models for Large-scale Dyadic Data using MCMC. 1993-2000

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














