


default search action
24. NIPS 2011: Granada, Spain
- John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, Kilian Q. Weinberger:

Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain. 2011 - Hua Wang, Heng Huang, Farhad Kamangar, Feiping Nie, Chris H. Q. Ding:

Maximum Margin Multi-Instance Learning. 1-9 - Francis R. Bach:

Shaping Level Sets with Submodular Functions. 10-18 - Sergey Levine, Zoran Popovic, Vladlen Koltun:

Nonlinear Inverse Reinforcement Learning with Gaussian Processes. 19-27 - Carl Vondrick, Deva Ramanan:

Video Annotation and Tracking with Active Learning. 28-36 - Stéphan Clémençon:

On U-processes and clustering performance. 37-45 - Yong Zhang, Zhaosong Lu:

Penalty Decomposition Methods for Rank Minimization. 46-54 - Ehsan Elhamifar, René Vidal:

Sparse Manifold Clustering and Embedding. 55-63 - Siwei Lyu:

Unifying Non-Maximum Likelihood Learning Objectives with Minimum KL Contraction. 64-72 - Yibiao Zhao, Song Chun Zhu:

Image Parsing with Stochastic Scene Grammar. 73-81 - Mehdi Keramati, Boris S. Gutkin:

A Reinforcement Learning Theory for Homeostatic Regulation. 82-90 - Philip M. Long, Rocco A. Servedio:

Learning large-margin halfspaces with more malicious noise. 91-99 - Richard G. Gibson, Duane Szafron:

On Strategy Stitching in Large Extensive Form Multiplayer Games. 100-108 - Philipp Krähenbühl, Vladlen Koltun:

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials. 109-117 - Joseph J. Lim, Ruslan Salakhutdinov, Antonio Torralba:

Transfer Learning by Borrowing Examples for Multiclass Object Detection. 118-126 - Dylan A. Simon, Nathaniel D. Daw:

Environmental statistics and the trade-off between model-based and TD learning in humans. 127-135 - Danilo Jimenez Rezende, Daan Wierstra, Wulfram Gerstner:

Variational Learning for Recurrent Spiking Networks. 136-144 - Dan Zhang, Yan Liu, Luo Si, Jian Zhang, Richard D. Lawrence:

Multiple Instance Learning on Structured Data. 145-153 - Nitesh Shroff, Pavan K. Turaga

, Rama Chellappa:
Manifold Precis: An Annealing Technique for Diverse Sampling of Manifolds. 154-162 - Ali Tofigh, Erik Sjölund, Mattias Höglund, Jens Lagergren:

A Global Structural EM Algorithm for a Model of Cancer Progression. 163-171 - Amir Massoud Farahmand:

Action-Gap Phenomenon in Reinforcement Learning. 172-180 - Nobuyuki Morioka, Shin'ichi Satoh:

Generalized Lasso based Approximation of Sparse Coding for Visual Recognition. 181-189 - Ricardo Silveira Cabral, Fernando De la Torre, João Paulo Costeira, Alexandre Bernardino:

Matrix Completion for Multi-label Image Classification. 190-198 - Paramveer S. Dhillon, Dean P. Foster, Lyle H. Ungar:

Multi-View Learning of Word Embeddings via CCA. 199-207 - Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan:

Global Solution of Fully-Observed Variational Bayesian Matrix Factorization is Column-Wise Independent. 208-216 - Ryota Kobayashi, Yasuhiro Tsubo, Petr Lánský, Shigeru Shinomoto:

Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron. 217-225 - David Duvenaud, Hannes Nickisch, Carl Edward Rasmussen:

Additive Gaussian Processes. 226-234 - Hai-Son Le, Ziv Bar-Joseph:

Inferring Interaction Networks using the IBP applied to microRNA Target Prediction. 235-243 - Hema Swetha Koppula, Abhishek Anand, Thorsten Joachims, Ashutosh Saxena:

Semantic Labeling of 3D Point Clouds for Indoor Scenes. 244-252 - Shilin Ding, Grace Wahba, Xiaojin (Jerry) Zhu:

Learning Higher-Order Graph Structure with Features by Structure Penalty. 253-261 - Tingting Zhao, Hirotaka Hachiya, Gang Niu, Masashi Sugiyama:

Analysis and Improvement of Policy Gradient Estimation. 262-270 - Ioannis Gkioulekas, Todd E. Zickler:

Dimensionality Reduction Using the Sparse Linear Model. 271-279 - Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Pierre Dupont:

Robust Multi-Class Gaussian Process Classification. 280-288 - Christoph H. Lampert:

Maximum Margin Multi-Label Structured Prediction. 289-297 - Ke Chen, Ahmad Salman:

Extracting Speaker-Specific Information with a Regularized Siamese Deep Network. 298-306 - Ricardo Bezerra de Andrade e Silva:

Thinning Measurement Models and Questionnaire Design. 307-315 - Charles Kemp:

Inductive reasoning about chimeric creatures. 316-324 - Philipp Hennig:

Optimal Reinforcement Learning for Gaussian Systems. 325-333 - Weiran Wang, Miguel Á. Carreira-Perpiñán, Zhengdong Lu:

A Denoising View of Matrix Completion. 334-342 - Nicolò Cesa-Bianchi, Ohad Shamir:

Efficient Online Learning via Randomized Rounding. 343-351 - Lei Yuan, Jun Liu, Jieping Ye:

Efficient Methods for Overlapping Group Lasso. 352-360 - Jing Lei:

Differentially Private M-Estimators. 361-369 - Kamil Wnuk, Stefano Soatto:

Multiple Instance Filtering. 370-378 - Morteza Alamgir, Ulrike von Luxburg:

Phase transition in the family of p-resistances. 379-387 - Yoonho Hwang, Hee-Kap Ahn:

Convergent Bounds on the Euclidean Distance. 388-396 - Yangqing Jia, Trevor Darrell:

Heavy-tailed Distances for Gradient Based Image Descriptors. 397-405 - Nicolas Boumal, Pierre-Antoine Absil:

RTRMC: A Riemannian trust-region method for low-rank matrix completion. 406-414 - Guido Montúfar, Johannes Rauh, Nihat Ay:

Expressive Power and Approximation Errors of Restricted Boltzmann Machines. 415-423 - Jasmina Bogojeska:

History distribution matching method for predicting effectiveness of HIV combination therapies. 424-432 - Binbin Lin, Chiyuan Zhang, Xiaofei He:

Semi-supervised Regression via Parallel Field Regularization. 433-441 - Ross B. Girshick, Pedro F. Felzenszwalb, David A. McAllester:

Object Detection with Grammar Models. 442-450 - Francis R. Bach, Eric Moulines:

Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. 451-459 - Stefanie Jegelka, Hui Lin, Jeff A. Bilmes:

On fast approximate submodular minimization. 460-468 - Matthias S. Keil:

Emergence of Multiplication in a Biophysical Model of a Wide-Field Visual Neuron for Computing Object Approaches: Dynamics, Peaks, & Fits. 469-477 - Kumar Sricharan, Alfred O. Hero III:

Efficient anomaly detection using bipartite k-NN graphs. 478-486 - Jun Liu, Liang Sun, Jieping Ye:

Projection onto A Nonnegative Max-Heap. 487-495 - David Newman, Edwin V. Bonilla, Wray L. Buntine:

Improving Topic Coherence with Regularized Topic Models. 496-504 - Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, Jieping Ye:

A Two-Stage Weighting Framework for Multi-Source Domain Adaptation. 505-513 - Joseph L. Austerweil, Abram L. Friesen, Thomas L. Griffiths:

An ideal observer model for identifying the reference frame of objects. 514-522 - Artin Armagan, David B. Dunson, Merlise A. Clyde:

Generalized Beta Mixtures of Gaussians. 523-531 - Youwei Zhang, Laurent El Ghaoui:

Large-Scale Sparse Principal Component Analysis with Application to Text Data. 532-539 - Trung-Thanh Pham, Tat-Jun Chin, Jin Yu, David Suter:

Simultaneous Sampling and Multi-Structure Fitting with Adaptive Reversible Jump MCMC. 540-548 - Congcong Li, Ashutosh Saxena, Tsuhan Chen:

$\theta$-MRF: Capturing Spatial and Semantic Structure in the Parameters for Scene Understanding. 549-557 - Ryan Gomes, Peter Welinder, Andreas Krause, Pietro Perona:

Crowdclustering. 558-566 - Jia Deng, Sanjeev Satheesh, Alexander C. Berg, Li Fei-Fei:

Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition. 567-575 - Ichiro Takeuchi, Masashi Sugiyama:

Target Neighbor Consistent Feature Weighting for Nearest Neighbor Classification. 576-584 - Luca Oneto, Davide Anguita, Alessandro Ghio, Sandro Ridella:

The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers. 585-593 - Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama:

Relative Density-Ratio Estimation for Robust Distribution Comparison. 594-602 - Denis Deratani Mauá, Cassio Polpo de Campos:

Solving Decision Problems with Limited Information. 603-611 - Zhouchen Lin, Risheng Liu, Zhixun Su:

Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation. 612-620 - Sung Ju Hwang, Kristen Grauman, Fei Sha:

Learning a Tree of Metrics with Disjoint Visual Features. 621-629 - Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, Karsten M. Borgwardt:

Efficient inference in matrix-variate Gaussian models with \iid observation noise. 630-638 - Joris M. Mooij, Dominik Janzing, Tom Heskes, Bernhard Schölkopf:

On Causal Discovery with Cyclic Additive Noise Models. 639-647 - Viren Jain, Srinivas C. Turaga, Kevin L. Briggman, Moritz Helmstaedter, Winfried Denk, H. Sebastian Seung:

Learning to Agglomerate Superpixel Hierarchies. 648-656 - Simon Wiesler, Hermann Ney:

A Convergence Analysis of Log-Linear Training. 657-665 - Olivier Delalleau, Yoshua Bengio:

Shallow vs. Deep Sum-Product Networks. 666-674 - Sebastian Kurtek, Anuj Srivastava, Wei Wu:

Signal Estimation Under Random Time-Warpings and Nonlinear Signal Alignment. 675-683 - Shie Mannor, Ohad Shamir:

From Bandits to Experts: On the Value of Side-Observations. 684-692 - Benjamin Recht, Christopher Ré, Stephen J. Wright, Feng Niu:

Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. 693-701 - Jiayu Zhou, Jianhui Chen, Jieping Ye:

Clustered Multi-Task Learning Via Alternating Structure Optimization. 702-710 - Joel Z. Leibo, Jim Mutch, Tomaso A. Poggio:

Why The Brain Separates Face Recognition From Object Recognition. 711-719 - André da Motta Salles Barreto, Doina Precup, Joelle Pineau:

Reinforcement Learning using Kernel-Based Stochastic Factorization. 720-728 - Samory Kpotufe:

k-NN Regression Adapts to Local Intrinsic Dimension. 729-737 - Xaq Pitkow, Yashar Ahmadian, Kenneth D. Miller:

Learning unbelievable probabilities. 738-746 - Matthew A. Kayala, Pierre Baldi:

A Machine Learning Approach to Predict Chemical Reactions. 747-755 - Biljana Petreska, Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, Maneesh Sahani:

Dynamical segmentation of single trials from population neural data. 756-764 - Peter V. Gehler, Carsten Rother, Martin Kiefel, Lumin Zhang, Bernhard Schölkopf:

Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance. 765-773 - Emin Orhan, Robert A. Jacobs:

Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations. 774-782 - Rémi Munos:

Optimistic Optimization of a Deterministic Function without the Knowledge of its Smoothness. 783-791 - Flavio Chierichetti, Jon M. Kleinberg, David Liben-Nowell:

Reconstructing Patterns of Information Diffusion from Incomplete Observations. 792-800 - Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, Christopher D. Manning:

Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection. 801-809 - Nir Ailon:

Active Learning Ranking from Pairwise Preferences with Almost Optimal Query Complexity. 810-818 - Yee Whye Teh, Charles Blundell, Lloyd T. Elliott:

Modelling Genetic Variations using Fragmentation-Coagulation Processes. 819-827 - Michael Kapralov

, Rina Panigrahy:
Prediction strategies without loss. 828-836 - Xiaoyin Ge, Issam Safa, Mikhail Belkin, Yusu Wang:

Data Skeletonization via Reeb Graphs. 837-845 - Kamiar Rahnama Rad, Liam Paninski:

Information Rates and Optimal Decoding in Large Neural Populations. 846-854 - Dmitry Pidan, Ran El-Yaniv:

Selective Prediction of Financial Trends with Hidden Markov Models. 855-863 - Xinggang Wang, Xiang Bai, Xingwei Yang, Wenyu Liu, Longin Jan Latecki:

Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning. 864-872 - Alekh Agarwal, John C. Duchi:

Distributed Delayed Stochastic Optimization. 873-881 - Ambuj Tewari, Pradeep Ravikumar, Inderjit S. Dhillon:

Greedy Algorithms for Structurally Constrained High Dimensional Problems. 882-890 - Elad Hazan, Satyen Kale:

Newtron: an Efficient Bandit algorithm for Online Multiclass Prediction. 891-899 - Zhen James Xiang, Hao Xu, Peter J. Ramadge:

Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries. 900-908 - Mladen Kolar, Sivaraman Balakrishnan, Alessandro Rinaldo, Aarti Singh:

Minimax Localization of Structural Information in Large Noisy Matrices. 909-917 - Vijay Mahadevan, Chi Wah Wong, José Costa Pereira, Tom Liu, Nuno Vasconcelos, Lawrence K. Saul:

Maximum Covariance Unfolding : Manifold Learning for Bimodal Data. 918-926 - Sham M. Kakade, Adam Kalai, Varun Kanade, Ohad Shamir:

Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression. 927-935 - Bo Chen, David E. Carlson, Lawrence Carin:

On the Analysis of Multi-Channel Neural Spike Data. 936-944 - Wouter M. Koolen, Wojciech Kotlowski, Manfred K. Warmuth:

Learning Eigenvectors for Free. 945-953 - Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, Aarti Singh:

Noise Thresholds for Spectral Clustering. 954-962 - Lu Ren, Yingjian Wang, David B. Dunson, Lawrence Carin:

The Kernel Beta Process. 963-971 - Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, Hisashi Kashima:

Statistical Performance of Convex Tensor Decomposition. 972-980 - Richard E. Turner, Maneesh Sahani:

Probabilistic amplitude and frequency demodulation. 981-989 - Dominique C. Perrault-Joncas, Marina Meila:

Directed Graph Embedding: an Algorithm based on Continuous Limits of Laplacian-type Operators. 990-998 - Yan Karklin, Eero P. Simoncelli:

Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons. 999-1007 - David A. Sontag, Daniel M. Roy:

Complexity of Inference in Latent Dirichlet Allocation. 1008-1016 - Quoc V. Le, Alexandre Karpenko, Jiquan Ngiam, Andrew Y. Ng:

ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. 1017-1025 - Maxim Raginsky, Alexander Rakhlin:

Lower Bounds for Passive and Active Learning. 1026-1034 - Alekh Agarwal, Dean P. Foster, Daniel J. Hsu, Sham M. Kakade, Alexander Rakhlin:

Stochastic convex optimization with bandit feedback. 1035-1043 - Shulin Yang, Ali Rahimi:

Structure Learning for Optimization. 1044-1052 - Shahed Sorower, Thomas G. Dietterich, Janardhan Rao Doppa, John Walker Orr, Prasad Tadepalli

, Xiaoli Z. Fern:
Inverting Grice's Maxims to Learn Rules from Natural Language Extractions. 1053-1061 - Tianshi Gao, Daphne Koller:

Active Classification based on Value of Classifier. 1062-1070 - Liang Xiong, Barnabás Póczos, Jeff G. Schneider:

Group Anomaly Detection using Flexible Genre Models. 1071-1079 - Dan Garber, Elad Hazan:

Approximating Semidefinite Programs in Sublinear Time. 1080-1088 - Andrew E. Waters, Aswin C. Sankaranarayanan, Richard G. Baraniuk:

SpaRCS: Recovering low-rank and sparse matrices from compressive measurements. 1089-1097 - Javad Azimi, Alan Fern, Xiaoli Z. Fern:

Budgeted Optimization with Concurrent Stochastic-Duration Experiments. 1098-1106 - Andrew Guillory, Jeff A. Bilmes:

Online Submodular Set Cover, Ranking, and Repeated Active Learning. 1107-1115 - Arthur Szlam, Karol Gregor, Yann LeCun:

Structured sparse coding via lateral inhibition. 1116-1124 - Jiquan Ngiam, Pang Wei Koh, Zhenghao Chen, Sonia A. Bhaskar, Andrew Y. Ng:

Sparse Filtering. 1125-1133 - Lester W. Mackey, Ameet Talwalkar, Michael I. Jordan:

Divide-and-Conquer Matrix Factorization. 1134-1142 - Vicente Ordonez, Girish Kulkarni, Tamara L. Berg:

Im2Text: Describing Images Using 1 Million Captioned Photographs. 1143-1151 - David Wingate, Noah D. Goodman, Andreas Stuhlmüller, Jeffrey Mark Siskind:

Nonstandard Interpretations of Probabilistic Programs for Efficient Inference. 1152-1160 - Daniel Sheldon, Thomas G. Dietterich:

Collective Graphical Models. 1161-1169 - Jun Wang, Huyen Do, Adam Woznica, Alexandros Kalousis:

Metric Learning with Multiple Kernels. 1170-1178 - Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua:

ShareBoost: Efficient multiclass learning with feature sharing. 1179-1187 - Balázs Ujfalussy, Máté Lengyel:

Active dendrites: adaptation to spike-based communication. 1188-1196 - Jiarong Jiang, Piyush Rai, Hal Daumé III:

Message-Passing for Approximate MAP Inference with Latent Variables. 1197-1205 - Miles Lopes, Laurent Jacob, Martin J. Wainwright:

A More Powerful Two-Sample Test in High Dimensions using Random Projection. 1206-1214 - Prateek Jain, Ambuj Tewari, Inderjit S. Dhillon:

Orthogonal Matching Pursuit with Replacement. 1215-1223 - Elodie Vernet, Robert C. Williamson, Mark D. Reid:

Composite Multiclass Losses. 1224-1232 - Elad Hazan, Tomer Koren, Nati Srebro:

Beating SGD: Learning SVMs in Sublinear Time. 1233-1241 - Dong Dai, Tong Zhang:

Greedy Model Averaging. 1242-1250 - Bin Zhao, Li Fei-Fei, Eric P. Xing:

Large-Scale Category Structure Aware Image Categorization. 1251-1259 - Anatoli Iouditski, Fatma Kilinç-Karzan, Arkadi Nemirovski, Boris T. Polyak:

On the accuracy of l1-filtering of signals with block-sparse structure. 1260-1268 - Qibin Zhao, Cesar F. Caiafa, Danilo P. Mandic, Liqing Zhang, Tonio Ball, Andreas Schulze-Bonhage, Andrzej Cichocki:

Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach. 1269-1277 - Alexandra Carpentier, Rémi Munos:

Finite Time Analysis of Stratified Sampling for Monte Carlo. 1278-1286 - Zhan Wei Lim, David Hsu, Wee Sun Lee:

Monte Carlo Value Iteration with Macro-Actions. 1287-1295 - Xinghua Lou, Fred A. Hamprecht:

Structured Learning for Cell Tracking. 1296-1304 - Cristina Savin, Peter Dayan, Máté Lengyel:

Two is better than one: distinct roles for familiarity and recollection in retrieving palimpsest memories. 1305-1313 - Rocco A. Servedio, Philip M. Long:

Algorithms and hardness results for parallel large margin learning. 1314-1322 - Fahad Shahbaz Khan

, Joost van de Weijer, Andrew D. Bagdanov, María Vanrell:
Portmanteau Vocabularies for Multi-Cue Image Representation. 1323-1331 - Charles Dubout, François Fleuret:

Boosting with Maximum Adaptive Sampling. 1332-1340 - Andrew McHutchon, Carl Edward Rasmussen:

Gaussian Process Training with Input Noise. 1341-1349 - Jakob H. Macke, Lars Buesing, John P. Cunningham, Byron M. Yu, Krishna V. Shenoy, Maneesh Sahani:

Empirical models of spiking in neural populations. 1350-1358 - Angela Yao, Juergen Gall, Luc Van Gool, Raquel Urtasun:

Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities. 1359-1367 - David Adametz, Volker Roth:

Bayesian Partitioning of Large-Scale Distance Data. 1368-1376 - Skander Mensi, Richard Naud, Wulfram Gerstner:

From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models. 1377-1385 - Guy Van den Broeck:

On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference. 1386-1394 - XianXing Zhang, David B. Dunson, Lawrence Carin:

Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices. 1395-1403 - Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, Eyke Hüllermeier:

An Exact Algorithm for F-Measure Maximization. 1404-1412 - Abhishek Kumar, Piyush Rai, Hal Daumé III:

Co-regularized Multi-view Spectral Clustering. 1413-1421 - Johanni Brea, Walter Senn, Jean-Pascal Pfister:

Sequence learning with hidden units in spiking neural networks. 1422-1430 - Shuai Huang, Jing Li, Jieping Ye, Teresa Wu, Kewei Chen, Adam Fleisher, Eric Reiman:

Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis. 1431-1439 - Chaitanya Ekanadham, Daniel Tranchina, Eero P. Simoncelli:

A blind sparse deconvolution method for neural spike identification. 1440-1448 - Faisal Khan, Xiaojin (Jerry) Zhu, Bilge Mutlu:

How Do Humans Teach: On Curriculum Learning and Teaching Dimension. 1449-1457 - Mark Schmidt, Nicolas Le Roux, Francis R. Bach:

Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. 1458-1466 - Andreas Geiger, Christian Wojek, Raquel Urtasun:

Joint 3D Estimation of Objects and Scene Layout. 1467-1475 - Soumya Ghosh, Andrei B. Ungureanu, Erik B. Sudderth, David M. Blei:

Spatial distance dependent Chinese restaurant processes for image segmentation. 1476-1484 - Victor S. Lempitsky, Andrea Vedaldi, Andrew Zisserman:

Pylon Model for Semantic Segmentation. 1485-1493 - Nan Ding, S. V. N. Vishwanathan, Yuan (Alan) Qi:

t-divergence Based Approximate Inference. 1494-1502 - Vincent Delaitre, Josef Sivic, Ivan Laptev:

Learning person-object interactions for action recognition in still images. 1503-1511 - James Petterson, Tibério S. Caetano:

Submodular Multi-Label Learning. 1512-1520 - Yusuke Watanabe:

Uniqueness of Belief Propagation on Signed Graphs. 1521-1529 - Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, Chang Dong Yoo:

Higher-Order Correlation Clustering for Image Segmentation. 1530-1538 - Mona Eberts, Ingo Steinwart:

Optimal learning rates for least squares SVMs using Gaussian kernels. 1539-1547 - Tzu-Kuo Huang, Jeff G. Schneider:

Learning Auto-regressive Models from Sequence and Non-sequence Data. 1548-1556 - Loc Bui, Ramesh Johari, Shie Mannor:

Committing Bandits. 1557-1565 - Martin B. Stemmler, Biswa Sengupta, Simon B. Laughlin, Jeremy E. Niven:

Energetically Optimal Action Potentials. 1566-1574 - Taiji Suzuki:

Unifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning. 1575-1583 - Fabio Vitale, Nicolò Cesa-Bianchi, Claudio Gentile, Giovanni Zappella:

See the Tree Through the Lines: The Shazoo Algorithm. 1584-1592 - Matus Telgarsky:

The Fast Convergence of Boosting. 1593-1601 - Aleksandrs Slivkins:

Multi-armed bandits on implicit metric spaces. 1602-1610 - Ziming Zhang, Lubor Ladicky, Philip H. S. Torr, Amir Saffari:

Learning Anchor Planes for Classification. 1611-1619 - Jun Zhu, Ning Chen, Eric P. Xing:

Infinite Latent SVM for Classification and Multi-task Learning. 1620-1628 - Matthew D. Zeiler, Graham W. Taylor, Leonid Sigal, Iain A. Matthews, Rob Fergus:

Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines. 1629-1637 - Yi-Kai Liu:

Universal low-rank matrix recovery from Pauli measurements. 1638-1646 - Andrew Cotter, Ohad Shamir, Nati Srebro, Karthik Sridharan:

Better Mini-Batch Algorithms via Accelerated Gradient Methods. 1647-1655 - Tim van Erven, Peter Grunwald, Wouter M. Koolen, Steven de Rooij:

Adaptive Hedge. 1656-1664 - Yair Wiener, Ran El-Yaniv:

Agnostic Selective Classification. 1665-1673 - Armen E. Allahverdyan, Aram Galstyan:

Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs. 1674-1682 - Yevgeny Seldin, Peter Auer, François Laviolette, John Shawe-Taylor, Ronald Ortner:

PAC-Bayesian Analysis of Contextual Bandits. 1683-1691 - Il Memming Park, Jonathan W. Pillow:

Bayesian Spike-Triggered Covariance Analysis. 1692-1700 - David A. Knowles, Tom Minka:

Non-conjugate Variational Message Passing for Multinomial and Binary Regression. 1701-1709 - Zhen Li, Huazhong Ning, Liangliang Cao, Tong Zhang, Yihong Gong, Thomas S. Huang:

Learning to Search Efficiently in High Dimensions. 1710-1718 - Oliver Kroemer, Jan Peters:

A Non-Parametric Approach to Dynamic Programming. 1719-1727 - Gautam Kunapuli, Richard Maclin, Jude W. Shavlik:

Advice Refinement in Knowledge-Based SVMs. 1728-1736 - Kenji Fukumizu, Le Song, Arthur Gretton:

Kernel Bayes' Rule. 1737-1745 - Alessandro Lazaric, Marcello Restelli:

Transfer from Multiple MDPs. 1746-1754 - Cédric Archambeau, Shengbo Guo, Onno Zoeter:

Sparse Bayesian Multi-Task Learning. 1755-1763 - Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari:

Online Learning: Stochastic, Constrained, and Smoothed Adversaries. 1764-1772 - Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R. G. Lanckriet:

Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint. 1773-1781 - Alexandra Carpentier, Odalric-Ambrym Maillard, Rémi Munos:

Sparse Recovery with Brownian Sensing. 1782-1790 - Michael C. Mozer, Benjamin Link, Harold Pashler:

An Unsupervised Decontamination Procedure For Improving The Reliability Of Human Judgments. 1791-1799 - Fabian L. Wauthier, Michael I. Jordan:

Bayesian Bias Mitigation for Crowdsourcing. 1800-1808 - Vikas C. Raykar, Shipeng Yu:

Ranking annotators for crowdsourced labeling tasks. 1809-1817 - Scott Niekum, Andrew G. Barto:

Clustering via Dirichlet Process Mixture Models for Portable Skill Discovery. 1818-1826 - Adrian Ion, João Carreira, Cristian Sminchisescu:

Probabilistic Joint Image Segmentation and Labeling. 1827-1835 - Joel Veness, Marc Lanctot, Michael H. Bowling:

Variance Reduction in Monte-Carlo Tree Search. 1836-1844 - Chun-Nam Yu, Russell Greiner, Hsiu-Chin Lin, Vickie Baracos:

Learning Patient-Specific Cancer Survival Distributions as a Sequence of Dependent Regressors. 1845-1853 - Pablo M. Olmos, Luis Salamanca, Juan José Murillo-Fuentes, Fernando Pérez-Cruz:

An Application of Tree-Structured Expectation Propagation for Channel Decoding. 1854-1862 - Animashree Anandkumar, Vincent Y. F. Tan, Alan S. Willsky:

High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions. 1863-1871 - Junichiro Hirayama, Aapo Hyvärinen:

Structural equations and divisive normalization for energy-dependent component analysis. 1872-1880 - Nam H. Nguyen, Nasser M. Nasrabadi, Trac D. Tran:

Robust Lasso with missing and grossly corrupted observations. 1881-1889 - Martin O. Larsson, Johan Ugander:

A concave regularization technique for sparse mixture models. 1890-1898 - Blake Shaw, Bert Huang, Tony Jebara:

Learning a Distance Metric from a Network. 1899-1907 - Pannagadatta K. Shivaswamy, Tony Jebara:

Variance Penalizing AdaBoost. 1908-1916 - João V. Messias, Matthijs T. J. Spaan, Pedro U. Lima:

Efficient Offline Communication Policies for Factored Multiagent POMDPs. 1917-1925 - Martin Slawski, Matthias Hein:

Sparse recovery by thresholded non-negative least squares. 1926-1934 - Ali Jalali, Christopher C. Johnson, Pradeep Ravikumar:

On Learning Discrete Graphical Models using Greedy Methods. 1935-1943 - Philip S. Thomas:

Policy Gradient Coagent Networks. 1944-1952 - David R. Karger, Sewoong Oh, Devavrat Shah:

Iterative Learning for Reliable Crowdsourcing Systems. 1953-1961 - Asela Gunawardana, Christopher Meek, Puyang Xu:

A Model for Temporal Dependencies in Event Streams. 1962-1970 - Andrew M. Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng:

Unsupervised learning models of primary cortical receptive fields and receptive field plasticity. 1971-1979 - Dae Il Kim, Erik B. Sudderth:

The Doubly Correlated Nonparametric Topic Model. 1980-1988 - Jaedeug Choi, Kee-Eung Kim:

MAP Inference for Bayesian Inverse Reinforcement Learning. 1989-1997 - Purushottam Kar, Prateek Jain:

Similarity-based Learning via Data Driven Embeddings. 1998-2006 - Olana Missura, Thomas Gärtner:

Predicting Dynamic Difficulty. 2007-2015 - David P. Wipf:

Sparse Estimation with Structured Dictionaries. 2016-2024 - Animashree Anandkumar, Kamalika Chaudhuri, Daniel J. Hsu, Sham M. Kakade, Le Song, Tong Zhang:

Spectral Methods for Learning Multivariate Latent Tree Structure. 2025-2033 - Jakob H. Macke, Iain Murray, Peter E. Latham:

How biased are maximum entropy models? 2034-2042 - Mijung Park, Greg Horwitz, Jonathan W. Pillow:

Active learning of neural response functions with Gaussian processes. 2043-2051 - Ardavan Saeedi, Alexandre Bouchard-Côté:

Priors over Recurrent Continuous Time Processes. 2052-2060 - Ruslan Salakhutdinov, Joshua B. Tenenbaum, Antonio Torralba:

Learning to Learn with Compound HD Models. 2061-2069 - Zuoguan Wang, Gerwin Schalk, Qiang Ji:

Anatomically Constrained Decoding of Finger Flexion from Electrocorticographic Signals. 2070-2078 - Liu Yang:

Active Learning with a Drifting Distribution. 2079-2087 - Alessandro Bergamo, Lorenzo Torresani, Andrew W. Fitzgibbon:

PiCoDes: Learning a Compact Code for Novel-Category Recognition. 2088-2096 - David S. Choi, Patrick J. Wolfe, Edoardo M. Airoldi:

Confidence Sets for Network Structure. 2097-2105 - Yoshinobu Kawahara, Takashi Washio:

Prismatic Algorithm for Discrete D.C. Programming Problem. 2106-2114 - Liefeng Bo, Xiaofeng Ren, Dieter Fox:

Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms. 2115-2123 - Mohammad J. Saberian, Nuno Vasconcelos:

Multiclass Boosting: Theory and Algorithms. 2124-2132 - Rina Foygel, Ruslan Salakhutdinov, Ohad Shamir, Nati Srebro:

Learning with the weighted trace-norm under arbitrary sampling distributions. 2133-2141 - Dan Feldman, Matthew Faulkner, Andreas Krause:

Scalable Training of Mixture Models via Coresets. 2142-2150 - Yusuf Kenan Yilmaz, Ali Taylan Cemgil, Umut Simsekli:

Generalised Coupled Tensor Factorisation. 2151-2159 - Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:

Nearest Neighbor based Greedy Coordinate Descent. 2160-2168 - J. Zico Kolter:

The Fixed Points of Off-Policy TD. 2169-2177 - Gilles Blanchard, Gyemin Lee, Clayton Scott:

Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. 2178-2186 - Edouard Grave, Guillaume Obozinski, Francis R. Bach:

Trace Lasso: a trace norm regularization for correlated designs. 2187-2195 - Levi Boyles, Anoop Korattikara Balan, Deva Ramanan, Max Welling:

Statistical Tests for Optimization Efficiency. 2196-2204 - David A. McAllester, Joseph Keshet:

Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss. 2205-2212 - Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C. Stewart, Shauki A. Elasaad, Krishna V. Shenoy, Kwabena Boahen:

A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm. 2213-2221 - Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric, Sébastien Bubeck:

Multi-Bandit Best Arm Identification. 2222-2230 - Dominique Tschopp, Suhas N. Diggavi, Payam Delgosha, Soheil Mohajer:

Randomized Algorithms for Comparison-based Search. 2231-2239 - Kevin G. Jamieson, Robert D. Nowak:

Active Ranking using Pairwise Comparisons. 2240-2248 - Olivier Chapelle, Lihong Li:

An Empirical Evaluation of Thompson Sampling. 2249-2257 - Thomas J. Walsh, Daniel Hewlett, Clayton T. Morrison:

Blending Autonomous Exploration and Apprenticeship Learning. 2258-2266 - Onur Dikmen, Cédric Févotte:

Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation. 2267-2275 - Alan Jern, Christopher G. Lucas, Charles Kemp:

Evaluating the inverse decision-making approach to preference learning. 2276-2284 - Christos Boutsidis, Petros Drineas

, Malik Magdon-Ismail:
Sparse Features for PCA-Like Linear Regression. 2285-2293 - Salah Rifai, Yann N. Dauphin, Pascal Vincent, Yoshua Bengio, Xavier Muller:

The Manifold Tangent Classifier. 2294-2302 - Alex K. Susemihl, Ron Meir, Manfred Opper:

Analytical Results for the Error in Filtering of Gaussian Processes. 2303-2311 - Yasin Abbasi-Yadkori, Dávid Pál, Csaba Szepesvári:

Improved Algorithms for Linear Stochastic Bandits. 2312-2320 - Joshua T. Abbott, Katherine A. Heller, Zoubin Ghahramani, Thomas L. Griffiths:

Testing a Bayesian Measure of Representativeness Using a Large Image Database. 2321-2329 - Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:

Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. 2330-2338 - Michalis K. Titsias, Miguel Lázaro-Gredilla:

Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning. 2339-2347 - Alex Graves:

Practical Variational Inference for Neural Networks. 2348-2356 - David P. Reichert, Peggy Seriès, Amos J. Storkey:

Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability. 2357-2365 - Matthias Hein, Simon Setzer:

Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts. 2366-2374 - Michael Shindler, Alex Wong, Adam Meyerson:

Fast and Accurate k-means For Large Datasets. 2375-2383 - Michael Pacer, Thomas L. Griffiths:

A rational model of causal inference with continuous causes. 2384-2392 - Yichuan Zhang, Charles Sutton:

Quasi-Newton Methods for Markov Chain Monte Carlo. 2393-2401 - George Dimitri Konidaris, Scott Niekum, Philip S. Thomas:

TD_gamma: Re-evaluating Complex Backups in Temporal Difference Learning. 2402-2410 - Mohammad Gheshlaghi Azar, Rémi Munos, Mohammad Ghavamzadeh, Hilbert J. Kappen:

Speedy Q-Learning. 2411-2419 - Patrick O. Perry, Michael W. Mahoney:

Regularized Laplacian Estimation and Fast Eigenvector Approximation. 2420-2428 - Phillip Isola, Devi Parikh, Antonio Torralba, Aude Oliva:

Understanding the Intrinsic Memorability of Images. 2429-2437 - Marius Kloft, Gilles Blanchard:

The Local Rademacher Complexity of Lp-Norm Multiple Kernel Learning. 2438-2446 - Andreas Krause, Cheng Soon Ong:

Contextual Gaussian Process Bandit Optimization. 2447-2455 - Minmin Chen, Kilian Q. Weinberger, John Blitzer:

Co-Training for Domain Adaptation. 2456-2464 - Neville Mehta, Prasad Tadepalli

, Alan Fern:
Autonomous Learning of Action Models for Planning. 2465-2473 - Vinayak A. Rao, Yee Whye Teh:

Gaussian process modulated renewal processes. 2474-2482 - Yisong Yue, Carlos Guestrin:

Linear Submodular Bandits and their Application to Diversified Retrieval. 2483-2491 - Duy Quang Vu, Arthur U. Asuncion, David R. Hunter, Padhraic Smyth:

Continuous-Time Regression Models for Longitudinal Networks. 2492-2500 - Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio:

On Tracking The Partition Function. 2501-2509 - Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:

Variational Gaussian Process Dynamical Systems. 2510-2518 - Vikas Sindhwani, Aurélie C. Lozano:

Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels. 2519-2527 - Adam Coates, Andrew Y. Ng:

Selecting Receptive Fields in Deep Networks. 2528-2536 - Daniel J. Lizotte:

Convergent Fitted Value Iteration with Linear Function Approximation. 2537-2545 - James Bergstra, Rémi Bardenet, Yoshua Bengio, Balázs Kégl:

Algorithms for Hyper-Parameter Optimization. 2546-2554 - Alyson K. Fletcher, Sundeep Rangan, Lav R. Varshney, Aniruddha Bhargava:

Neural Reconstruction with Approximate Message Passing (NeuRAMP). 2555-2563 - Michael L. Wick, Andrew McCallum:

Query-Aware MCMC. 2564-2572 - Paul Wagner:

A reinterpretation of the policy oscillation phenomenon in approximate policy iteration. 2573-2581 - Ian H. Stevenson, Konrad P. Körding:

Inferring spike-timing-dependent plasticity from spike train data. 2582-2590 - Omar Zia Khan, Pascal Poupart, John Mark Agosta:

Automated Refinement of Bayes Networks' Parameters based on Test Ordering Constraints. 2591-2599 - Jacob D. Abernethy, Rafael M. Frongillo:

A Collaborative Mechanism for Crowdsourcing Prediction Problems. 2600-2608 - Adler J. Perotte, Frank D. Wood, Noemie Elhadad, Nicholas Bartlett:

Hierarchically Supervised Latent Dirichlet Allocation. 2609-2617 - Jacquelyn A. Shelton, Jörg Bornschein, Abdul-Saboor Sheikh, Pietro Berkes

, Jörg Lücke:
Select and Sample - A Model of Efficient Neural Inference and Learning. 2618-2626 - Odalric-Ambrym Maillard, Rémi Munos, Daniil Ryabko:

Selecting the State-Representation in Reinforcement Learning. 2627-2635 - Joni Pajarinen, Jaakko Peltonen:

Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning. 2636-2644 - Nati Srebro, Karthik Sridharan, Ambuj Tewari:

On the Universality of Online Mirror Descent. 2645-2653 - Wieland Brendel, Ranulfo Romo, Christian K. Machens:

Demixed Principal Component Analysis. 2654-2662 - Yuan (Alan) Qi, Feng Yan:

EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning. 2663-2671 - Ping Li, Anshumali Shrivastava, Joshua L. Moore, Arnd Christian König:

Hashing Algorithms for Large-Scale Learning. 2672-2680 - Iasonas Kokkinos:

Rapid Deformable Object Detection using Dual-Tree Branch-and-Bound. 2681-2689 - Nico Görnitz, Christian Widmer, Georg Zeller, André Kahles, Sören Sonnenburg, Gunnar Rätsch:

Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation. 2690-2698 - Bo Chen, Vidhya Navalpakkam, Pietro Perona:

Predicting response time and error rates in visual search. 2699-2707 - Le Song, Ankur P. Parikh, Eric P. Xing:

Kernel Embeddings of Latent Tree Graphical Models. 2708-2716 - Florian Stimberg, Manfred Opper, Guido Sanguinetti, Andreas Ruttor:

Inference in continuous-time change-point models. 2717-2725 - Po-Ling Loh, Martin J. Wainwright:

High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity. 2726-2734 - Bogdan Alexe, Viviana Petrescu, Vittorio Ferrari:

Exploiting spatial overlap to efficiently compute appearance distances between image windows. 2735-2743 - Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, Bart Selman:

Accelerated Adaptive Markov Chain for Partition Function Computation. 2744-2752

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














