


Остановите войну!
for scientists:


default search action
Mineichi Kudo
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j61]Mariko Tai, Mineichi Kudo
, Akira Tanaka, Hideyuki Imai, Keigo Kimura:
Kernelized Supervised Laplacian Eigenmap for Visualization and Classification of Multi-Label Data. Pattern Recognit. 123: 108399 (2022) - [c126]Kai Tanaka, Mineichi Kudo, Keigo Kimura:
Sensor Data Simulation with Wandering Behavior for the Elderly Living Alone. ICPR 2022: 885-891 - [c125]Shumpei Morishita
, Mineichi Kudo
, Keigo Kimura
, Lu Sun
:
Realization of Autoencoders by Kernel Methods. S+SSPR 2022: 1-10 - [c124]Keigo Kimura
, Jiaqi Bao, Mineichi Kudo
, Lu Sun
:
Retargeted Regression Methods for Multi-label Learning. S+SSPR 2022: 203-212 - [c123]Mineichi Kudo
, Keigo Kimura
, Shumpei Morishita
, Lu Sun
:
Efficient Leave-One-Out Evaluation of Kernelized Implicit Mappings. S+SSPR 2022: 223-232 - [i3]Zhiwei Li, Lu Sun, Mineichi Kudo, Kego Kimura:
CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels. CoRR abs/2201.01079 (2022) - 2021
- [j60]Kejing Lu, Mineichi Kudo
:
AdaLSH: Adaptive LSH for Solving c-Approximate Maximum Inner Product Search Problem. IEICE Trans. Inf. Syst. 104-D(1): 138-145 (2021) - [j59]Kejing Lu, Mineichi Kudo, Chuan Xiao, Yoshiharu Ishikawa:
HVS: Hierarchical Graph Structure Based on Voronoi Diagrams for Solving Approximate Nearest Neighbor Search. Proc. VLDB Endow. 15(2): 246-258 (2021) - [c122]Kejing Lu, Mineichi Kudo
:
MLSH: Mixed Hash Function Family for Approximate Nearest Neighbor Search in Multiple Fractional Metrics. DASFAA (2) 2021: 569-584 - [c121]Shuhei Aoki, Mineichi Kudo
:
Balancing of Samples in Class Hierarchy. IWAIPR 2021: 219-228 - [c120]Tomoya Horio, Mineichi Kudo
:
Feature Selection with Class Hierarchy for Imbalance Problems. IWAIPR 2021: 229-238 - [c119]Yasuyuki Kaneko, Mineichi Kudo
:
SVM Based EVM for Open Space Problems. IWAIPR 2021: 239-248 - 2020
- [j58]Kejing Lu, Hongya Wang, Wei Wang, Mineichi Kudo
:
VHP: Approximate Nearest Neighbor Search via Virtual Hypersphere Partitioning. Proc. VLDB Endow. 13(9): 1443-1455 (2020) - [c118]Mitsuki Maekawa, Atsuyoshi Nakamura, Mineichi Kudo:
Data-Dependent Conversion to a Compact Integer-Weighted Representation of a Weighted Voting Classifier. ACML 2020: 241-256 - [c117]Kejing Lu, Mineichi Kudo
:
R2LSH: A Nearest Neighbor Search Scheme Based on Two-dimensional Projected Spaces. ICDE 2020: 1045-1056
2010 – 2019
- 2019
- [j57]Lu Sun
, Mineichi Kudo
:
Multi-label classification by polytree-augmented classifier chains with label-dependent features. Pattern Anal. Appl. 22(3): 1029-1049 (2019) - [c116]Mariko Tai, Mineichi Kudo
:
A Supervised Laplacian Eigenmap Algorithm for Visualization of Multi-label Data: SLE-ML. CIARP 2019: 525-534 - 2018
- [j56]Ryo Watanabe, Junpei Komiyama, Atsuyoshi Nakamura
, Mineichi Kudo
:
UCB-SC: A Fast Variant of KL-UCB-SC for Budgeted Multi-Armed Bandit Problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101-A(3): 662-667 (2018) - [j55]Lu Sun
, Mineichi Kudo
:
Optimization of classifier chains via conditional likelihood maximization. Pattern Recognit. 74: 503-517 (2018) - 2017
- [j54]Jana Backhus, Ichigaku Takigawa
, Hideyuki Imai, Mineichi Kudo
, Masanori Sugimoto:
An Online Self-Constructive Normalized Gaussian Network with Localized Forgetting. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(3): 865-876 (2017) - [j53]Koji Tabata, Atsuyoshi Nakamura
, Mineichi Kudo
:
An Efficient Approximate Algorithm for the 1-Median Problem on a Graph. IEICE Trans. Inf. Syst. 100-D(5): 994-1002 (2017) - [j52]Lu Sun
, Mineichi Kudo
, Keigo Kimura:
READER: Robust Semi-Supervised Multi-Label Dimension Reduction. IEICE Trans. Inf. Syst. 100-D(10): 2597-2604 (2017) - [j51]Ryo Watanabe, Junpei Komiyama, Atsuyoshi Nakamura
, Mineichi Kudo
:
KL-UCB-Based Policy for Budgeted Multi-Armed Bandits with Stochastic Action Costs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(11): 2470-2486 (2017) - [i2]Hiroyuki Hanada, Mineichi Kudo, Atsuyoshi Nakamura:
On Practical Accuracy of Edit Distance Approximation Algorithms. CoRR abs/1701.06134 (2017) - [i1]Keigo Kimura, Lu Sun, Mineichi Kudo:
MLC Toolbox: A MATLAB/OCTAVE Library for Multi-Label Classification. CoRR abs/1704.02592 (2017) - 2016
- [j50]Atsuyoshi Nakamura
, Ichigaku Takigawa
, Hisashi Tosaka, Mineichi Kudo
, Hiroshi Mamitsuka
:
Mining approximate patterns with frequent locally optimal occurrences. Discret. Appl. Math. 200: 123-152 (2016) - [j49]Keigo Kimura, Mineichi Kudo
, Yuzuru Tanaka:
A column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraint. Mach. Learn. 103(2): 285-306 (2016) - [j48]Guoliang Lu, Yiqi Zhou, Xueyong Li, Mineichi Kudo
:
Efficient action recognition via local position offset of 3D skeletal body joints. Multim. Tools Appl. 75(6): 3479-3494 (2016) - [j47]Sadamori Koujaku
, Ichigaku Takigawa
, Mineichi Kudo
, Hideyuki Imai:
Dense core model for cohesive subgraph discovery. Soc. Networks 44: 143-152 (2016) - [j46]Hideaki Konno, Mineichi Kudo
, Hideyuki Imai, Masanori Sugimoto:
Whisper to normal speech conversion using pitch estimated from spectrum. Speech Commun. 83: 10-20 (2016) - [c115]Lu Sun
, Mineichi Kudo
, Keigo Kimura:
A Scalable Clustering-Based Local Multi-Label Classification Method. ECAI 2016: 261-268 - [c114]Jana Backhus, Ichigaku Takigawa
, Hideyuki Imai, Mineichi Kudo
, Masanori Sugimoto:
Reducing Redundancy with Unit Merging for Self-constructive Normalized Gaussian Networks. ICANN (1) 2016: 444-452 - [c113]Jana Backhus, Ichigaku Takigawa
, Hideyuki Imai, Mineichi Kudo
, Masanori Sugimoto:
Online EM for the Normalized Gaussian Network with Weight-Time-Dependent Updates. ICONIP (4) 2016: 538-546 - [c112]Keigo Kimura, Mineichi Kudo
, Lu Sun
, Sadamori Koujaku:
Fast random k-labELsets for large-scale multi-label classification. ICPR 2016: 438-443 - [c111]Lu Sun
, Mineichi Kudo
, Keigo Kimura:
Multi-label classification with meta-label-specific features. ICPR 2016: 1612-1617 - [c110]Syota Suzuuchi, Mineichi Kudo
:
Location-associated indoor behavior analysis of multiple persons. ICPR 2016: 2079-2084 - [c109]Batzaya Norov-Erdene, Mineichi Kudo
, Lu Sun
, Keigo Kimura:
Locality in multi-label classification problems. ICPR 2016: 2319-2324 - [c108]Mineichi Kudo
, Keigo Kimura, Michal Haindl, Hiroshi Tenmoto:
Simultaneous visualization of samples, features and multi-labels. ICPR 2016: 3603-3608 - [c107]Shunsuke Suzuki, Mineichi Kudo
, Atsuyoshi Nakamura
:
Sitting posture diagnosis using a pressure sensor mat. ISBA 2016: 1-6 - [c106]Keigo Kimura, Mineichi Kudo
, Lu Sun
:
Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification. S+SSPR 2016: 15-25 - 2015
- [j45]Akira Tanaka, Hirofumi Takebayashi, Ichigaku Takigawa
, Hideyuki Imai, Mineichi Kudo
:
Ensemble and Multiple Kernel Regressors: Which Is Better? IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(11): 2315-2324 (2015) - [j44]Ryo Watanabe, Atsuyoshi Nakamura
, Mineichi Kudo
:
An improved upper bound on the expected regret of UCB-type policies for a matching-selection bandit problem. Oper. Res. Lett. 43(6): 558-563 (2015) - [j43]Xavier Lladó, Atsushi Imiya, David Mason, Constantino Carlos Reyes-Aldasoro
, Kazuaki Aoki, Mineichi Kudo
, Yu-Jin Zhang, Vasileios Argyriou:
Corrigendum to 'Homage to Professor Maria Petrou' [ Pattern Recognition Letters 48 (2014) 2-7]. Pattern Recognit. Lett. 54: 109 (2015) - [j42]Shuai Tao, Mineichi Kudo
, Bingnan Pei, Hidetoshi Nonaka, Jun Toyama:
Multiperson Locating and Their Soft Tracking in a Binary Infrared Sensor Network. IEEE Trans. Hum. Mach. Syst. 45(5): 550-561 (2015) - [c105]Michal Haindl, Stanislav Mikes, Mineichi Kudo
:
Unsupervised Surface Reflectance Field Multi-segmenter. CAIP (1) 2015: 261-273 - [c104]Koji Tabata, Atsuyoshi Nakamura
, Mineichi Kudo
:
An Algorithm for Influence Maximization in a Two-Terminal Series Parallel Graph and its Application to a Real Network. Discovery Science 2015: 275-283 - [c103]Keigo Kimura, Mineichi Kudo
:
Variable Selection for Efficient Nonnegative Tensor Factorization. ICDM 2015: 805-810 - [c102]Lu Sun, Mineichi Kudo:
Polytree-Augmented Classifier Chains for Multi-Label Classification. IJCAI 2015: 3834-3840 - [c101]Ayako Mikami, Mineichi Kudo
, Atsuyoshi Nakamura
:
Diversity Measures and Margin Criteria in Multi-class Majority Vote Ensemble. MCS 2015: 27-37 - [c100]Sadamori Koujaku, Mineichi Kudo
, Ichigaku Takigawa
, Hideyuki Imai:
Community Change Detection in Dynamic Networks in Noisy Environment. WWW (Companion Volume) 2015: 793-798 - 2014
- [j41]Guoliang Lu, Mineichi Kudo
:
Learning action patterns in difference images for efficient action recognition. Neurocomputing 123: 328-336 (2014) - [j40]Tomomi Endo, Kazuhiro Omura, Mineichi Kudo
:
Analysis of Relationship between RéNyi Entropy and Marginal Bayes error and its Application to Weighted naïVE Bayes Classifiers. Int. J. Pattern Recognit. Artif. Intell. 28(7) (2014) - [j39]Koji Ouchi, Atsuyoshi Nakamura
, Mineichi Kudo
:
An efficient construction and application usefulness of rectangle greedy covers. Pattern Recognit. 47(3): 1459-1468 (2014) - [j38]Hiroyuki Hanada, Mineichi Kudo
, Atsuyoshi Nakamura
:
Average-case linear-time similar substring searching by the q-gram distance. Theor. Comput. Sci. 530: 23-41 (2014) - [c99]Anton Milan, Stefan Roth, Konrad Schindler, Mineichi Kudo
:
Privacy Preserving Multi-target Tracking. ACCV Workshops (3) 2014: 519-530 - [c98]Keigo Kimura, Yuzuru Tanaka, Mineichi Kudo:
A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization. ACML 2014 - [c97]Akira Tanaka, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo:
Theoretical Analyses on Ensemble and Multiple Kernel Regressors. ACML 2014 - [c96]Kenshiro Nishikawa, Mineichi Kudo
:
Group Sleepiness Measurement in Classroom. AMMDS 2014: 64-72 - [c95]Hideaki Konno, Rinako Sato, Hideyuki Imai, Mineichi Kudo
:
Deterioration of intelligibility in whispered Japanese speech. APSIPA 2014: 1-4 - [c94]Hiroshi Tsukioka, Mineichi Kudo
:
Selection of Features in Accord with Population Drift. ICPR 2014: 1591-1596 - [c93]Akira Tanaka, Ichigaku Takigawa
, Hideyuki Imai, Mineichi Kudo
:
Analyses on Generalization Error of Ensemble Kernel Regressors. S+SSPR 2014: 273-281 - 2013
- [j37]Atsuyoshi Nakamura
, Tomoya Saito, Ichigaku Takigawa
, Mineichi Kudo
, Hiroshi Mamitsuka
:
Fast algorithms for finding a minimum repetition representation of strings and trees. Discret. Appl. Math. 161(10-11): 1556-1575 (2013) - [j36]Guoliang Lu, Mineichi Kudo
:
Self-Similarities in Difference Images: A New Cue for Single-Person Oriented Action Recognition. IEICE Trans. Inf. Syst. 96-D(5): 1238-1242 (2013) - [j35]Guoliang Lu, Mineichi Kudo
, Jun Toyama:
Temporal segmentation and assignment of successive actions in a long-term video. Pattern Recognit. Lett. 34(15): 1936-1944 (2013) - [c92]Yingmei Piao, Mineichi Kudo
:
How Do Facial Expressions Contribute to Age Prediction? ACPR 2013: 882-886 - [c91]Hideaki Konno, Hideo Kanemitsu, Nobuyuki Takahashi, Mineichi Kudo
:
Acoustic characteristics related to the perceptual pitch in whispered vowels. ASRU 2013: 245-249 - [c90]Tomomi Endo, Mineichi Kudo
:
Weighted Naïve Bayes Classifiers by Renyi Entropy. CIARP (1) 2013: 149-156 - 2012
- [j34]Guoliang Lu, Mineichi Kudo
, Jun Toyama:
Selection of Characteristic Frames in Video for Efficient Action Recognition. IEICE Trans. Inf. Syst. 95-D(10): 2514-2521 (2012) - [j33]Shen Pan, Mineichi Kudo:
Recognition of Wood Porosity Based on Direction Insensitive Feature Sets. Trans. Mach. Learn. Data Min. 5(1): 45-62 (2012) - [j32]Shuai Tao, Mineichi Kudo
, Hidetoshi Nonaka:
Privacy-Preserved Behavior Analysis and Fall Detection by an Infrared Ceiling Sensor Network. Sensors 12(12): 16920-16936 (2012) - [c89]Koji Tabata, Atsuyoshi Nakamura
, Mineichi Kudo
:
Fast Approximation Algorithm for the 1-Median Problem. Discovery Science 2012: 169-183 - [c88]Shuai Tao, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Camera view usage of binary infrared sensors for activity recognition. ICPR 2012: 1759-1762 - [c87]Guoliang Lu, Mineichi Kudo, Jun Toyama:
Action recognition via sparse representation of characteristic frames. ICPR 2012: 3268-3271 - [c86]Atsuyoshi Nakamura
, Hisashi Tosaka, Mineichi Kudo
:
Frequent Approximate Substring Pattern Mining Using Locally Optimal Occurrence Counting. IIAI-AAI 2012: 54-59 - [c85]Hironobu Yasuda, Mineichi Kudo
:
Speech rate change detection in martingale framework. ISDA 2012: 859-864 - [c84]Kazuhiro Omura, Mineichi Kudo
, Tomomi Endo, Tetsuya Murai:
Weighted naïve Bayes classifier on categorical features. ISDA 2012: 865-870 - [c83]Akira Tanaka, Ichigaku Takigawa
, Hideyuki Imai, Mineichi Kudo
:
Extended Analyses for an Optimal Kernel in a Class of Kernels with an Invariant Metric. SSPR/SPR 2012: 345-353 - [e2]Georgy L. Gimel'farb, Edwin R. Hancock, Atsushi Imiya, Arjan Kuijper
, Mineichi Kudo, Shinichiro Omachi, Terry Windeatt
, Keiji Yamada:
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, SSPR&SPR 2012, Hiroshima, Japan, November 7-9, 2012. Proceedings. Lecture Notes in Computer Science 7626, Springer 2012, ISBN 978-3-642-34165-6 [contents] - 2011
- [j31]Tetsuji Takahashi, Mineichi Kudo
, Atsuyoshi Nakamura
:
Construction of convex hull classifiers in high dimensions. Pattern Recognit. Lett. 32(16): 2224-2230 (2011) - [c82]Shuai Tao, Mineichi Kudo
, Hidetoshi Nonaka, Jun Toyama:
Person Authentication and Activities Analysis in an Office Environment Using a Sensor Network. AmI Workshops 2011: 119-127 - [c81]Shuai Tao, Mineichi Kudo
, Hidetoshi Nonaka, Jun Toyama:
Person Localization and Soft Authentication Using an Infrared Ceiling Sensor Network. CAIP (2) 2011: 122-129 - [c80]Guoliang Lu, Mineichi Kudo
, Jun Toyama:
Hierarchical Foreground Detection in Dynamic Background. CAIP (2) 2011: 413-420 - [c79]Hiroyuki Hanada, Atsuyoshi Nakamura
, Mineichi Kudo
:
A practical comparison of edit distance approximation algorithms. GrC 2011: 231-236 - [c78]Guoliang Lu, Mineichi Kudo
, Jun Toyama:
Robust human pose estimation from corrupted images with partial occlusions and noise pollutions. GrC 2011: 433-438 - [c77]Hisataka Nakane, Jun Toyama, Mineichi Kudo
:
Fatigue detection using a pressure sensor chair. GrC 2011: 490-495 - [c76]Kazuhiro Omura, Kazuaki Aoki, Mineichi Kudo
:
Attribute value reduction for gaining simpler rules. GrC 2011: 527-532 - [c75]Koji Ouchi, Atsuyoshi Nakamura
, Mineichi Kudo
:
Efficient construction and usefulness of hyper-rectangle greedy covers. GrC 2011: 533-538 - [c74]Shuai Tao, Mineichi Kudo
, Hidetoshi Nonaka, Jun Toyama:
Recording the Activities of Daily Living based on person localization using an infrared ceiling sensor network. GrC 2011: 647-652 - [c73]Akira Tanaka, Hideyuki Imai, Mineichi Kudo
, Masaaki Miyakoshi:
Theoretical analyses on a class of nested RKHS's. ICASSP 2011: 2072-2075 - [c72]Shen Pan, Mineichi Kudo
:
Recognition of Porosity in Wood Microscopic Anatomical Images. ICDM 2011: 147-160 - [c71]Atsuyoshi Nakamura, Mineichi Kudo
:
Packing Alignment: Alignment for Sequences of Various Length Events. PAKDD (2) 2011: 234-245 - [c70]Hidetoshi Nonaka, Shuai Tao, Jun Toyama, Mineichi Kudo:
Ceiling Sensor Network for Soft Authentication and Person Tracking using Equilibrium Line. PECCS 2011: 218-223 - [e1]Tzung-Pei Hong, Yasuo Kudo, Mineichi Kudo, Tsau Young Lin, Been-Chian Chien, Shyue-Liang Wang, Masahiro Inuiguchi, Guilong Liu:
2011 IEEE International Conference on Granular Computing, GrC-2011, Kaohsiung, Taiwan, November 8-10, 2011. IEEE Computer Society 2011, ISBN 978-1-4577-0372-0 [contents] - 2010
- [j30]Jun Toyama, Mineichi Kudo
, Hideyuki Imai:
Probably correct k-nearest neighbor search in high dimensions. Pattern Recognit. 43(4): 1361-1372 (2010) - [j29]Kenji Tabata, Maiko Sato, Mineichi Kudo
:
Data compression by volume prototypes for streaming data. Pattern Recognit. 43(9): 3162-3176 (2010) - [c69]Taishi Uchiya, Atsuyoshi Nakamura
, Mineichi Kudo
:
Algorithms for Adversarial Bandit Problems with Multiple Plays. ALT 2010: 375-389 - [c68]Akira Tanaka, Hideyuki Imai, Mineichi Kudo
, Masaaki Miyakoshi:
A Relationship Between Generalization Error and Training Samples in Kernel Regressors. ICPR 2010: 1421-1424 - [c67]Tetsuji Takahashi, Mineichi Kudo
:
Margin Preserved Approximate Convex Hulls for Classification. ICPR 2010: 4052-4055 - [c66]Kazuaki Aoki, Mineichi Kudo
:
A top-down construction of class decision trees with selected features and classifiers. HPCS 2010: 390-398 - [c65]Atsuyoshi Nakamura
, Tomoya Saito, Ichigaku Takigawa
, Hiroshi Mamitsuka
, Mineichi Kudo
:
Algorithms for Finding a Minimum Repetition Representation of a String. SPIRE 2010: 185-190 - [c64]Kazuki Tsuji, Mineichi Kudo
, Akira Tanaka:
Localized Projection Learning. SSPR/SPR 2010: 90-99
2000 – 2009
- 2009
- [j28]Ichigaku Takigawa
, Mineichi Kudo
, Atsuyoshi Nakamura
:
Convex sets as prototypes for classifying patterns. Eng. Appl. Artif. Intell. 22(1): 101-108 (2009) - [j27]Taisuke Hosokawa, Mineichi Kudo
, Hidetoshi Nonaka, Jun Toyama:
Soft authentication using an infrared ceiling sensor network. Pattern Anal. Appl. 12(3): 237-249 (2009) - [j26]Masafumi Yamada, Kazuhiro Kamiya, Mineichi Kudo
, Hidetoshi Nonaka, Jun Toyama:
Soft authentication and behavior analysis using a chair with sensors attached: hipprint authentication. Pattern Anal. Appl. 12(3): 251-260 (2009) - [c63]Tetsuji Takahashi, Mineichi Kudo
, Atsuyoshi Nakamura
:
Classifier Selection in a Family of Polyhedron Classifiers. CIARP 2009: 441-448 - [c62]Mineichi Kudo
, Jun Toyama, Hideyuki Imai:
A Fast Nearest Neighbor Method Using Empirical Marginal Distribution. KES (2) 2009: 333-339 - [c61]Satoshi Shirai, Mineichi Kudo
, Atsuyoshi Nakamura
:
Comparison of Bagging and Boosting Algorithms on Sample and Feature Weighting. MCS 2009: 22-31 - [c60]Maiko Sato, Mineichi Kudo, Jun Toyama:
Clustering and Density Estimation for Streaming Data using Volume Prototypes. PRIS 2009: 39-48 - 2008
- [j25]Yohji Shidara, Mineichi Kudo, Atsuyoshi Nakamura:
Classification Based on Consistent Itemset Rules. Trans. Mach. Learn. Data Min. 1(1): 17-30 (2008) - [j24]Mineichi Kudo
, Tetsuya Murai:
Extended DNF Expression and Variable Granularity in Information Tables. IEEE Trans. Fuzzy Syst. 16(2): 285-298 (2008) - [c59]Atsuyoshi Nakamura
, Mineichi Kudo
:
What Sperner Family Concept Class is Easy to Be Enumerated? ICDM 2008: 482-491 - [c58]Kazuhiro Kamiya, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Sitting posture analysis by pressure sensors. ICPR 2008: 1-4 - [c57]Mineichi Kudo, Atsuyoshi Nakamura, Ichigaku Takigawa:
Classification by reflective convex hulls. ICPR 2008: 1-4 - [c56]Yohji Shidara, Mineichi Kudo
, Atsuyoshi Nakamura:
Classification by bagged consistent itemset rules. ICPR 2008: 1-4 - [c55]Akira Tanaka, Hideyuki Imai, Mineichi Kudo
, Masaaki Miyakoshi:
Optimal Kernel in a Class of Kernels with an Invariant Metric. SSPR/SPR 2008: 530-539 - [c54]Kazuaki Aoki, Mineichi Kudo
:
Feature and Classifier Selection in Class Decision Trees. SSPR/SPR 2008: 562-571 - [c53]Hiroshi Tenmoto, Mineichi Kudo
:
Soft Feature Selection by Using a Histogram-Based Classifier. SSPR/SPR 2008: 572-581 - [c52]