default search action
Stefanie Jegelka
Stefanie Sabrina Jegelka
Person information
- affiliation: Massachusetts Institute of Technology (MIT), CSAIL, Cambridge, MA, USA
- affiliation: University of California, Berkeley, Department of EECS, Berkeley, CA, USA
- affiliation (PhD 2012): ETH Zurich, Department of Computer Science, Switzerland
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany
- affiliation: University of Tübingen, Wilhelm Schickard Institute for Computer Sciences, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c98]Sharut Gupta, Joshua Robinson, Derek Lim, Soledad Villar, Stefanie Jegelka:
Structuring Representation Geometry with Rotationally Equivariant Contrastive Learning. ICLR 2024 - [c97]Sharut Gupta, Stefanie Jegelka, David Lopez-Paz, Kartik Ahuja:
Context is Environment. ICLR 2024 - [c96]Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, Pan Li:
On the Stability of Expressive Positional Encodings for Graphs. ICLR 2024 - [c95]Bobak T. Kiani, Thien Le, Hannah Lawrence, Stefanie Jegelka, Melanie Weber:
On the hardness of learning under symmetries. ICLR 2024 - [c94]Thien Le, Luana Ruiz, Stefanie Jegelka:
A Poincaré Inequality and Consistency Results for Signal Sampling on Large Graphs. ICLR 2024 - [c93]Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, Stefanie Jegelka:
Position: Future Directions in the Theory of Graph Machine Learning. ICML 2024 - [c92]Khashayar Gatmiry, Zhiyuan Li, Sashank J. Reddi, Stefanie Jegelka:
Simplicity Bias via Global Convergence of Sharpness Minimization. ICML 2024 - [c91]Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, Sanjiv Kumar:
Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? ICML 2024 - [c90]Behrooz Tahmasebi, Stefanie Jegelka:
Sample Complexity Bounds for Estimating Probability Divergences under Invariances. ICML 2024 - [c89]Behrooz Tahmasebi, Ashkan Soleymani, Dara Bahri, Stefanie Jegelka, Patrick Jaillet:
A Universal Class of Sharpness-Aware Minimization Algorithms. ICML 2024 - [i97]Bobak T. Kiani, Thien Le, Hannah Lawrence, Stefanie Jegelka, Melanie Weber:
On the hardness of learning under symmetries. CoRR abs/2401.01869 (2024) - [i96]Christopher Morris, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Fabrizio Frasca, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, Stefanie Jegelka:
Future Directions in Foundations of Graph Machine Learning. CoRR abs/2402.02287 (2024) - [i95]Yifei Wang, Wenhan Ma, Stefanie Jegelka, Yisen Wang:
How to Craft Backdoors with Unlabeled Data Alone? CoRR abs/2404.06694 (2024) - [i94]Sharut Gupta, Chenyu Wang, Yifei Wang, Tommi S. Jaakkola, Stefanie Jegelka:
In-Context Symmetries: Self-Supervised Learning through Contextual World Models. CoRR abs/2405.18193 (2024) - [i93]George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, Yisen Wang:
A Canonization Perspective on Invariant and Equivariant Learning. CoRR abs/2405.18378 (2024) - [i92]Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, Yisen Wang:
A Theoretical Understanding of Self-Correction through In-context Alignment. CoRR abs/2405.18634 (2024) - [i91]Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, Ali Jadbabaie:
On the Role of Attention Masks and LayerNorm in Transformers. CoRR abs/2405.18781 (2024) - [i90]Derek Lim, Moe Putterman, Robin Walters, Haggai Maron, Stefanie Jegelka:
The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof. CoRR abs/2405.20231 (2024) - [i89]Behrooz Tahmasebi, Ashkan Soleymani, Dara Bahri, Stefanie Jegelka, Patrick Jaillet:
A Universal Class of Sharpness-Aware Minimization Algorithms. CoRR abs/2406.03682 (2024) - [i88]Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, Stefanie Jegelka:
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges. CoRR abs/2407.09618 (2024) - 2023
- [c88]Behrooz Tahmasebi, Derek Lim, Stefanie Jegelka:
The Power of Recursion in Graph Neural Networks for Counting Substructures. AISTATS 2023: 11023-11042 - [c87]Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka:
Sign and Basis Invariant Networks for Spectral Graph Representation Learning. ICLR 2023 - [c86]Ching-Yao Chuang, Stefanie Jegelka, David Alvarez-Melis:
InfoOT: Information Maximizing Optimal Transport. ICML 2023: 6228-6242 - [c85]Michael Murphy, Stefanie Jegelka, Ernest Fraenkel, Tobias Kind, David Healey, Thomas Butler:
Efficiently predicting high resolution mass spectra with graph neural networks. ICML 2023: 25549-25562 - [c84]Khashayar Gatmiry, Zhiyuan Li, Tengyu Ma, Sashank J. Reddi, Stefanie Jegelka, Ching-Yao Chuang:
What is the Inductive Bias of Flatness Regularization? A Study of Deep Matrix Factorization Models. NeurIPS 2023 - [c83]Thien Le, Stefanie Jegelka:
Limits, approximation and size transferability for GNNs on sparse graphs via graphops. NeurIPS 2023 - [c82]Derek Lim, Joshua Robinson, Stefanie Jegelka, Haggai Maron:
Expressive Sign Equivariant Networks for Spectral Geometric Learning. NeurIPS 2023 - [c81]Behrooz Tahmasebi, Stefanie Jegelka:
The Exact Sample Complexity Gain from Invariances for Kernel Regression. NeurIPS 2023 - [i87]Michael Murphy, Stefanie Jegelka, Ernest Fraenkel, Tobias Kind, David Healey, Thomas Butler:
Efficiently predicting high resolution mass spectra with graph neural networks. CoRR abs/2301.11419 (2023) - [i86]Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio Torralba, Stefanie Jegelka:
Debiasing Vision-Language Models via Biased Prompts. CoRR abs/2302.00070 (2023) - [i85]Ryotaro Okabe, Shangjie Xue, Jiankai Yu, Tongtong Liu, Benoit Forget, Stefanie Jegelka, Gordon Kohse, Lin-wen Hu, Mingda Li:
Tetris-inspired detector with neural network for radiation mapping. CoRR abs/2302.07099 (2023) - [i84]Behrooz Tahmasebi, Stefanie Jegelka:
The Exact Sample Complexity Gain from Invariances for Kernel Regression on Manifolds. CoRR abs/2303.14269 (2023) - [i83]Thien Le, Stefanie Jegelka:
Limits, approximation and size transferability for GNNs on sparse graphs via graphops. CoRR abs/2306.04495 (2023) - [i82]Khashayar Gatmiry, Zhiyuan Li, Ching-Yao Chuang, Sashank J. Reddi, Tengyu Ma, Stefanie Jegelka:
The Inductive Bias of Flatness Regularization for Deep Matrix Factorization. CoRR abs/2306.13239 (2023) - [i81]Sharut Gupta, Joshua Robinson, Derek Lim, Soledad Villar, Stefanie Jegelka:
Structuring Representation Geometry with Rotationally Equivariant Contrastive Learning. CoRR abs/2306.13924 (2023) - [i80]Sharut Gupta, Stefanie Jegelka, David Lopez-Paz, Kartik Ahuja:
Context is Environment. CoRR abs/2309.09888 (2023) - [i79]Morris Yau, Eric Lu, Nikolaos Karalias, Jessica Xu, Stefanie Jegelka:
Are Graph Neural Networks Optimal Approximation Algorithms? CoRR abs/2310.00526 (2023) - [i78]Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, Pan Li:
On the Stability of Expressive Positional Encodings for Graph Neural Networks. CoRR abs/2310.02579 (2023) - [i77]Behrooz Tahmasebi, Stefanie Jegelka:
Sample Complexity Bounds for Estimating Probability Divergences under Invariances. CoRR abs/2311.02868 (2023) - [i76]Thien Le, Luana Ruiz, Stefanie Jegelka:
A Poincaré Inequality and Consistency Results for Signal Sampling on Large Graphs. CoRR abs/2311.10610 (2023) - [i75]Derek Lim, Joshua Robinson, Stefanie Jegelka, Haggai Maron:
Expressive Sign Equivariant Networks for Spectral Geometric Learning. CoRR abs/2312.02339 (2023) - 2022
- [c80]Ching-Yao Chuang, R. Devon Hjelm, Xin Wang, Vibhav Vineet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, Yale Song:
Robust Contrastive Learning against Noisy Views. CVPR 2022: 16649-16660 - [c79]Khashayar Gatmiry, Stefanie Jegelka, Jonathan A. Kelner:
Optimization and Adaptive Generalization of Three layer Neural Networks. ICLR 2022 - [c78]Thien Le, Stefanie Jegelka:
Training invariances and the low-rank phenomenon: beyond linear networks. ICLR 2022 - [c77]Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, Stefanie Jegelka:
On the generalization of learning algorithms that do not converge. NeurIPS 2022 - [c76]Ching-Yao Chuang, Stefanie Jegelka:
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks. NeurIPS 2022 - [c75]Nikolaos Karalias, Joshua Robinson, Andreas Loukas, Stefanie Jegelka:
Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions. NeurIPS 2022 - [e1]Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, Sivan Sabato:
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA. Proceedings of Machine Learning Research 162, PMLR 2022 [contents] - [i74]Ching-Yao Chuang, R. Devon Hjelm, Xin Wang, Vibhav Vineet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, Yale Song:
Robust Contrastive Learning against Noisy Views. CoRR abs/2201.04309 (2022) - [i73]Thien Le, Stefanie Jegelka:
Training invariances and the low-rank phenomenon: beyond linear networks. CoRR abs/2201.11968 (2022) - [i72]Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka:
Sign and Basis Invariant Networks for Spectral Graph Representation Learning. CoRR abs/2202.13013 (2022) - [i71]Stefanie Jegelka:
Theory of Graph Neural Networks: Representation and Learning. CoRR abs/2204.07697 (2022) - [i70]Nikolaos Karalias, Joshua Robinson, Andreas Loukas, Stefanie Jegelka:
Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions. CoRR abs/2208.04055 (2022) - [i69]Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, Stefanie Jegelka:
On the generalization of learning algorithms that do not converge. CoRR abs/2208.07951 (2022) - [i68]Ching-Yao Chuang, Stefanie Jegelka:
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks. CoRR abs/2210.01906 (2022) - [i67]Ching-Yao Chuang, Stefanie Jegelka, David Alvarez-Melis:
InfoOT: Information Maximizing Optimal Transport. CoRR abs/2210.03164 (2022) - [i66]Tasuku Soma, Khashayar Gatmiry, Stefanie Jegelka:
Optimal algorithms for group distributionally robust optimization and beyond. CoRR abs/2212.13669 (2022) - [i65]Martin Grohe, Stephan Günnemann, Stefanie Jegelka, Christopher Morris:
Graph Embeddings: Theory meets Practice (Dagstuhl Seminar 22132). Dagstuhl Reports 12(3): 141-155 (2022) - 2021
- [c74]Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, Stefanie Jegelka:
Contrastive Learning with Hard Negative Samples. ICLR 2021 - [c73]Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021 - [c72]Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi S. Jaakkola, Geoffrey J. Gordon, Stefanie Jegelka, Ruslan Salakhutdinov:
Information Obfuscation of Graph Neural Networks. ICML 2021: 6600-6610 - [c71]Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, Kenji Kawaguchi:
Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth. ICML 2021: 11592-11602 - [c70]Andreas Loukas, Marinos Poiitis, Stefanie Jegelka:
What training reveals about neural network complexity. NeurIPS 2021: 494-508 - [c69]Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, Suvrit Sra:
Can contrastive learning avoid shortcut solutions? NeurIPS 2021: 4974-4986 - [c68]Ching-Yao Chuang, Youssef Mroueh, Kristjan H. Greenewald, Antonio Torralba, Stefanie Jegelka:
Measuring Generalization with Optimal Transport. NeurIPS 2021: 8294-8306 - [c67]Alkis Gotovos, Rebekka Burkholz, John Quackenbush, Stefanie Jegelka:
Scaling up Continuous-Time Markov Chains Helps Resolve Underspecification. NeurIPS 2021: 14580-14592 - [i64]Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, Kenji Kawaguchi:
Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth. CoRR abs/2105.04550 (2021) - [i63]Ching-Yao Chuang, Youssef Mroueh, Kristjan H. Greenewald, Antonio Torralba, Stefanie Jegelka:
Measuring Generalization with Optimal Transport. CoRR abs/2106.03314 (2021) - [i62]Andreas Loukas, Marinos Poiitis, Stefanie Jegelka:
What training reveals about neural network complexity. CoRR abs/2106.04186 (2021) - [i61]Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, Suvrit Sra:
Can contrastive learning avoid shortcut solutions? CoRR abs/2106.11230 (2021) - [i60]Alkis Gotovos, Rebekka Burkholz, John Quackenbush, Stefanie Jegelka:
Scaling up Continuous-Time Markov Chains Helps Resolve Underspecification. CoRR abs/2107.02911 (2021) - 2020
- [j6]Edward Kim, Zach Jensen, Alexander van Grootel, Kevin Huang, Matthew Staib, Sheshera Mysore, Haw-Shiuan Chang, Emma Strubell, Andrew McCallum, Stefanie Jegelka, Elsa Olivetti:
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks. J. Chem. Inf. Model. 60(3): 1194-1201 (2020) - [c66]Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause:
Distributionally Robust Bayesian Optimization. AISTATS 2020: 2174-2184 - [c65]Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
What Can Neural Networks Reason About? ICLR 2020 - [c64]Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka:
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations. ICML 2020: 1984-1994 - [c63]Vikas K. Garg, Stefanie Jegelka, Tommi S. Jaakkola:
Generalization and Representational Limits of Graph Neural Networks. ICML 2020: 3419-3430 - [c62]Marwa El Halabi, Stefanie Jegelka:
Optimal approximation for unconstrained non-submodular minimization. ICML 2020: 3961-3972 - [c61]Joshua Robinson, Stefanie Jegelka, Suvrit Sra:
Strength from Weakness: Fast Learning Using Weak Supervision. ICML 2020: 8127-8136 - [c60]Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, Ali Jadbabaie:
Complexity of Finding Stationary Points of Nonconvex Nonsmooth Functions. ICML 2020: 11173-11182 - [c59]Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, Hongzhou Lin:
IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method. NeurIPS 2020 - [c58]Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, Stefanie Jegelka:
Debiased Contrastive Learning. NeurIPS 2020 - [c57]Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause:
Adaptive Sampling for Stochastic Risk-Averse Learning. NeurIPS 2020 - [c56]Khashayar Gatmiry, Maryam Aliakbarpour, Stefanie Jegelka:
Testing Determinantal Point Processes. NeurIPS 2020 - [i59]Yossi Arjevani, Amit Daniely, Stefanie Jegelka, Hongzhou Lin:
On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions. CoRR abs/2002.03273 (2020) - [i58]Vikas K. Garg, Stefanie Jegelka, Tommi S. Jaakkola:
Generalization and Representational Limits of Graph Neural Networks. CoRR abs/2002.06157 (2020) - [i57]Joshua Robinson, Stefanie Jegelka, Suvrit Sra:
Strength from Weakness: Fast Learning Using Weak Supervision. CoRR abs/2002.08483 (2020) - [i56]Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause:
Distributionally Robust Bayesian Optimization. CoRR abs/2002.09038 (2020) - [i55]Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, Hongzhou Lin:
IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method. CoRR abs/2006.06733 (2020) - [i54]Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, Stefanie Jegelka:
Debiased Contrastive Learning. CoRR abs/2007.00224 (2020) - [i53]Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka:
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations. CoRR abs/2007.03511 (2020) - [i52]Khashayar Gatmiry, Maryam Aliakbarpour, Stefanie Jegelka:
Testing Determinantal Point Processes. CoRR abs/2008.03650 (2020) - [i51]Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. CoRR abs/2009.11848 (2020) - [i50]Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi S. Jaakkola, Geoffrey J. Gordon, Stefanie Jegelka, Ruslan Salakhutdinov:
Graph Adversarial Networks: Protecting Information against Adversarial Attacks. CoRR abs/2009.13504 (2020) - [i49]Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, Stefanie Jegelka:
Contrastive Learning with Hard Negative Samples. CoRR abs/2010.04592 (2020) - [i48]Behrooz Tahmasebi, Stefanie Jegelka:
Counting Substructures with Higher-Order Graph Neural Networks: Possibility and Impossibility Results. CoRR abs/2012.03174 (2020)
2010 – 2019
- 2019
- [j5]Gal Shulkind, Stefanie Jegelka, Gregory W. Wornell:
Sensor Array Design Through Submodular Optimization. IEEE Trans. Inf. Theory 65(1): 664-675 (2019) - [c55]Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, Jordan L. Boyd-Graber:
Are Girls Neko or Shōjo? Cross-Lingual Alignment of Non-Isomorphic Embeddings with Iterative Normalization. ACL (1) 2019: 3180-3189 - [c54]Matthew Staib, Bryan Wilder, Stefanie Jegelka:
Distributionally Robust Submodular Maximization. AISTATS 2019: 506-516 - [c53]David Alvarez-Melis, Stefanie Jegelka, Tommi S. Jaakkola:
Towards Optimal Transport with Global Invariances. AISTATS 2019: 1870-1879 - [c52]Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka:
How Powerful are Graph Neural Networks? ICLR 2019 - [c51]Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:
Learning Generative Models across Incomparable Spaces. ICML 2019: 851-861 - [c50]Matthew Staib, Stefanie Jegelka:
Distributionally Robust Optimization and Generalization in Kernel Methods. NeurIPS 2019: 9131-9141 - [c49]Joshua Robinson, Suvrit Sra, Stefanie Jegelka:
Flexible Modeling of Diversity with Strongly Log-Concave Distributions. NeurIPS 2019: 15199-15209 - [i47]Edward Kim, Zach Jensen, Alexander van Grootel, Kevin Huang, Matthew Staib, Sheshera Mysore, Haw-Shiuan Chang, Emma Strubell, Andrew McCallum, Stefanie Jegelka, Elsa Olivetti:
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks. CoRR abs/1901.00032 (2019) - [i46]Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:
Learning Generative Models across Incomparable Spaces. CoRR abs/1905.05461 (2019) - [i45]Matthew Staib, Stefanie Jegelka:
Distributionally Robust Optimization and Generalization in Kernel Methods. CoRR abs/1905.10943 (2019) - [i44]Marwa El Halabi, Stefanie Jegelka:
Minimizing approximately submodular functions. CoRR abs/1905.12145 (2019) - [i43]Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka:
What Can Neural Networks Reason About? CoRR abs/1905.13211 (2019) - [i42]Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, Jordan L. Boyd-Graber:
Are Girls Neko or Shōjo? Cross-Lingual Alignment of Non-Isomorphic Embeddings with Iterative Normalization. CoRR abs/1906.01622 (2019) - [i41]Joshua Robinson, Suvrit Sra, Stefanie Jegelka:
Flexible Modeling of Diversity with Strongly Log-Concave Distributions. CoRR abs/1906.05413 (2019) - [i40]Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka:
The Role of Embedding Complexity in Domain-invariant Representations. CoRR abs/1910.05804 (2019) - [i39]Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause:
Adaptive Sampling for Stochastic Risk-Averse Learning. CoRR abs/1910.12511 (2019) - 2018
- [c48]Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause:
Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly. AAAI 2018: 1379-1386 - [c47]Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka:
Batched Large-scale Bayesian Optimization in High-dimensional Spaces. AISTATS 2018: 745-754 - [c46]David Alvarez-Melis, Tommi S. Jaakkola, Stefanie Jegelka:
Structured Optimal Transport. AISTATS 2018: 1771-1780 - [c45]Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra:
Distributional Adversarial Networks. ICLR (Workshop) 2018 - [c44]Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka:
Representation Learning on Graphs with Jumping Knowledge Networks. ICML 2018: 5449-5458 - [c43]Josip Djolonga, Stefanie Jegelka, Andreas Krause:
Provable Variational Inference for Constrained Log-Submodular Models. NeurIPS 2018: 2702-2712 - [c42]Zelda E. Mariet, Suvrit Sra, Stefanie Jegelka:
Exponentiated Strongly Rayleigh Distributions. NeurIPS 2018: 4464-4474 - [c41]Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher:
Adversarially Robust Optimization with Gaussian Processes. NeurIPS 2018: 5765-5775 - [c40]