


default search action
36th ICML 2019: Long Beach, California, USA
- Kamalika Chaudhuri, Ruslan Salakhutdinov:

Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research 97, PMLR 2019 - Gabriele Abbati, Philippe Wenk, Michael A. Osborne

, Andreas Krause, Bernhard Schölkopf, Stefan Bauer:
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs. 1-10 - Axel Abels

, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, Denis Steckelmacher:
Dynamic Weights in Multi-Objective Deep Reinforcement Learning. 11-20 - Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. 21-29 - Jayadev Acharya, Clément L. Canonne

, Himanshu Tyagi:
Communication-Constrained Inference and the Role of Shared Randomness. 30-39 - Jayadev Acharya, Chris De Sa, Dylan J. Foster, Karthik Sridharan:

Distributed Learning with Sublinear Communication. 40-50 - Jayadev Acharya, Ziteng Sun:

Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters. 51-60 - Roy Adams, Yuelong Ji, Xiaobin Wang, Suchi Saria:

Learning Models from Data with Measurement Error: Tackling Underreporting. 61-70 - Tameem Adel, Adrian Weller:

TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning. 71-81 - Abhijin Adiga, Chris J. Kuhlman, Madhav V. Marathe, S. S. Ravi, Anil Vullikanti:

PAC Learnability of Node Functions in Networked Dynamical Systems. 82-91 - Ashish Agarwal:

Static Automatic Batching In TensorFlow. 92-101 - Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, Yi Zhang:

Efficient Full-Matrix Adaptive Regularization. 102-110 - Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, Karan Singh:

Online Control with Adversarial Disturbances. 111-119 - Alekh Agarwal, Miroslav Dudík, Zhiwei Steven Wu:

Fair Regression: Quantitative Definitions and Reduction-Based Algorithms. 120-129 - Rishabh Agarwal, Chen Liang, Dale Schuurmans, Mohammad Norouzi:

Learning to Generalize from Sparse and Underspecified Rewards. 130-140 - Raj Agrawal, Brian L. Trippe, Jonathan H. Huggins, Tamara Broderick:

The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions. 141-150 - Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans:

Understanding the Impact of Entropy on Policy Optimization. 151-160 - Ulrich Aïvodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, Alain Tapp:

Fairwashing: the risk of rationalization. 161-170 - Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari, Kento Uchida, Shota Saito

, Kouhei Nishida:
Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search. 171-180 - Riad Akrour, Joni Pajarinen, Jan Peters, Gerhard Neumann:

Projections for Approximate Policy Iteration Algorithms. 181-190 - Ahmed M. Alaa, Mihaela van der Schaar:

Validating Causal Inference Models via Influence Functions. 191-201 - Isabela Albuquerque, João Monteiro, Thang Doan, Breandan Considine, Tiago H. Falk, Ioannis Mitliagkas:

Multi-objective training of Generative Adversarial Networks with multiple discriminators. 202-211 - Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauzá Villalonga, Alberto Rodriguez, Tomás Lozano-Pérez, Leslie Pack Kaelbling:

Graph Element Networks: adaptive, structured computation and memory. 212-222 - Carl Allen, Timothy M. Hospedales:

Analogies Explained: Towards Understanding Word Embeddings. 223-231 - Kelsey R. Allen, Evan Shelhamer, Hanul Shin, Joshua B. Tenenbaum:

Infinite Mixture Prototypes for Few-shot Learning. 232-241 - Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song:

A Convergence Theory for Deep Learning via Over-Parameterization. 242-252 - Ahsan S. Alvi, Bin Xin Ru, Jan-Peter Calliess, Stephen J. Roberts, Michael A. Osborne

:
Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation. 253-262 - Kareem Amin, Alex Kulesza, Andres Muñoz Medina, Sergei Vassilvitskii:

Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy. 263-271 - Marco Ancona, Cengiz Öztireli, Markus H. Gross:

Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Value Approximation. 272-281 - Jesse Anderton, Javed A. Aslam:

Scaling Up Ordinal Embedding: A Landmark Approach. 282-290 - Cem Anil, James Lucas, Roger B. Grosse:

Sorting Out Lipschitz Function Approximation. 291-301 - Luigi Antelmi, Nicholas Ayache, Philippe Robert, Marco Lorenzi:

Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data. 302-311 - Eric Arazo, Diego Ortego, Paul Albert, Noel E. O'Connor, Kevin McGuinness:

Unsupervised Label Noise Modeling and Loss Correction. 312-321 - Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li

, Ruosong Wang:
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks. 322-332 - Sepehr Assadi, MohammadHossein Bateni, Vahab S. Mirrokni:

Distributed Weighted Matching via Randomized Composable Coresets. 333-343 - Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, Michael G. Rabbat:

Stochastic Gradient Push for Distributed Deep Learning. 344-353 - Raul Astudillo, Peter I. Frazier:

Bayesian Optimization of Composite Functions. 354-363 - Kubilay Atasu, Thomas Mittelholzer:

Linear-Complexity Data-Parallel Earth Mover's Distance Approximations. 364-373 - Jordan Awan, Ana Kenney, Matthew Reimherr, Aleksandra B. Slavkovic:

Benefits and Pitfalls of the Exponential Mechanism with Applications to Hilbert Spaces and Functional PCA. 374-384 - Sergül Aydöre, Bertrand Thirion, Gaël Varoquaux:

Feature Grouping as a Stochastic Regularizer for High-Dimensional Structured Data. 385-394 - Fadhel Ayed, Juho Lee, Francois Caron:

Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with double power-law behavior. 395-404 - Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian

, Tal Wagner:
Scalable Fair Clustering. 405-413 - Yogesh Balaji, Hamed Hassani, Rama Chellappa, Soheil Feizi:

Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs. 414-423 - Maria-Florina Balcan, Mikhail Khodak, Ameet Talwalkar:

Provable Guarantees for Gradient-Based Meta-Learning. 424-433 - David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Pérolat, Max Jaderberg, Thore Graepel:

Open-ended learning in symmetric zero-sum games. 434-443 - Muhammed Fatih Balin, Abubakar Abid, James Y. Zou:

Concrete Autoencoders: Differentiable Feature Selection and Reconstruction. 444-453 - Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, Stewart Wilcox:

HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving. 454-463 - Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly L. Stachenfeld, Pushmeet Kohli, Peter W. Battaglia, Jessica B. Hamrick:

Structured agents for physical construction. 464-474 - Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, Artem Babenko:

Learning to Route in Similarity Graphs. 475-484 - Pablo V. A. Barros, German Ignacio Parisi, Stefan Wermter:

A Personalized Affective Memory Model for Improving Emotion Recognition. 485-494 - Peter L. Bartlett, Victor Gabillon, Jennifer Healey, Michal Valko:

Scale-free adaptive planning for deterministic dynamics & discounted rewards. 495-504 - Soumya Basu, Steven Gutstein, Brent Lance, Sanjay Shakkottai:

Pareto Optimal Streaming Unsupervised Classification. 505-514 - MohammadHossein Bateni, Lin Chen, Hossein Esfandiari, Thomas Fu, Vahab S. Mirrokni, Afshin Rostamizadeh:

Categorical Feature Compression via Submodular Optimization. 515-523 - Joshua Batson, Loïc Royer:

Noise2Self: Blind Denoising by Self-Supervision. 524-533 - Alex Beatson, Ryan P. Adams:

Efficient optimization of loops and limits with randomized telescoping sums. 534-543 - Philipp Becker, Harit Pandya, Gregor H. W. Gebhardt, Cheng Zhao, C. James Taylor, Gerhard Neumann:

Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces. 544-552 - Philip Becker-Ehmck, Jan Peters, Patrick van der Smagt

:
Switching Linear Dynamics for Variational Bayes Filtering. 553-562 - Sima Behpour, Anqi Liu, Brian D. Ziebart:

Active Learning for Probabilistic Structured Prediction of Cuts and Matchings. 563-572 - Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Jörn-Henrik Jacobsen:

Invertible Residual Networks. 573-582 - Eugene Belilovsky, Michael Eickenberg, Edouard Oyallon:

Greedy Layerwise Learning Can Scale To ImageNet. 583-593 - Yassine Benyahia, Kaicheng Yu, Kamil Bennani-Smires, Martin Jaggi, Anthony C. Davison, Mathieu Salzmann, Claudiu Musat:

Overcoming Multi-model Forgetting. 594-603 - Frederik Benzing, Marcelo Matheus Gauy, Asier Mujika, Anders Martinsson, Angelika Steger:

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning. 604-613 - Martín Bertrán, Natalia Martínez, Afroditi Papadaki, Qiang Qiu, Miguel R. D. Rodrigues, Galen Reeves, Guillermo Sapiro:

Adversarially Learned Representations for Information Obfuscation and Inference. 614-623 - Alina Beygelzimer, Dávid Pál, Balázs Szörényi, Devanathan Thiruvenkatachari, Chen-Yu Wei, Chicheng Zhang:

Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case. 624-633 - Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, Seraphin B. Calo:

Analyzing Federated Learning through an Adversarial Lens. 634-643 - Yatao An Bian, Joachim M. Buhmann, Andreas Krause

:
Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference. 644-653 - Aurélien Bibaut, Ivana Malenica, Nikos Vlassis, Mark J. van der Laan:

More Efficient Off-Policy Evaluation through Regularized Targeted Learning. 654-663 - Alberto Bietti, Grégoire Mialon, Dexiong Chen, Julien Mairal:

A Kernel Perspective for Regularizing Deep Neural Networks. 664-674 - Yochai Blau, Tomer Michaeli:

Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff. 675-685 - Vinay Praneeth Boda, Prashanth L. A.:

Correlated bandits or: How to minimize mean-squared error online. 686-694 - Aleksandar Bojchevski, Stephan Günnemann:

Adversarial Attacks on Node Embeddings via Graph Poisoning. 695-704 - Zalán Borsos, Sebastian Curi, Kfir Yehuda Levy, Andreas Krause:

Online Variance Reduction with Mixtures. 705-714 - Avishek Joey Bose, William L. Hamilton:

Compositional Fairness Constraints for Graph Embeddings. 715-724 - Xavier Bouthillier, César Laurent, Pascal Vincent:

Unreproducible Research is Reproducible. 725-734 - Gábor Braun, Sebastian Pokutta, Dan Tu, Stephen J. Wright:

Blended Conditonal Gradients. 735-743 - Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, Xuan Wu:

Coresets for Ordered Weighted Clustering. 744-753 - Margaux Brégère, Pierre Gaillard, Yannig Goude, Gilles Stoltz:

Target Tracking for Contextual Bandits: Application to Demand Side Management. 754-763 - Robert A. Bridges, Anthony D. Gruber, Christopher Felder

, Miki E. Verma, Chelsey Hoff:
Active Manifolds: A non-linear analogue to Active Subspaces. 764-772 - David H. Brookes, Hahnbeom Park, Jennifer Listgarten:

Conditioning by adaptive sampling for robust design. 773-782 - Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum:

Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations. 783-792 - Noam Brown, Adam Lerer, Sam Gross, Tuomas Sandholm:

Deep Counterfactual Regret Minimization. 793-802 - Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, Richard S. Zemel:

Understanding the Origins of Bias in Word Embeddings. 803-811 - Alon Brutzkus, Ran Gilad-Bachrach, Oren Elisha:

Low Latency Privacy Preserving Inference. 812-821 - Alon Brutzkus, Amir Globerson:

Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem. 822-830 - Sébastien Bubeck, Yin Tat Lee, Eric Price, Ilya P. Razenshteyn:

Adversarial examples from computational constraints. 831-840 - Eliav Buchnik, Edith Cohen, Avinatan Hassidim, Yossi Matias:

Self-similar Epochs: Value in arrangement. 841-850 - Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:

Learning Generative Models across Incomparable Spaces. 851-861 - David R. Burt, Carl Edward Rasmussen, Mark van der Wilk:

Rates of Convergence for Sparse Variational Gaussian Process Regression. 862-871 - Jonathon Byrd, Zachary Chase Lipton:

What is the Effect of Importance Weighting in Deep Learning? 872-881 - Yongqiang Cai, Qianxiao Li, Zuowei Shen:

A Quantitative Analysis of the Effect of Batch Normalization on Gradient Descent. 882-890 - Bugra Can, Mert Gürbüzbalaban, Lingjiong Zhu:

Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances. 891-901 - Gregory Canal, Andrew K. Massimino, Mark A. Davenport, Christopher J. Rozell:

Active Embedding Search via Noisy Paired Comparisons. 902-911 - Junyu Cao, Wei Sun:

Dynamic Learning with Frequent New Product Launches: A Sequential Multinomial Logit Bandit Problem. 912-920 - Adrian Rivera Cardoso, Jacob D. Abernethy, He Wang, Huan Xu:

Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games. 921-930 - Henry Chai, Jean-Francois Ton, Michael A. Osborne

, Roman Garnett:
Automated Model Selection with Bayesian Quadrature. 931-940 - Yash Chandak, Georgios Theocharous, James E. Kostas, Scott M. Jordan, Philip S. Thomas:

Learning Action Representations for Reinforcement Learning. 941-950 - Chun-Hao Chang, Mingjie Mai, Anna Goldenberg:

Dynamic Measurement Scheduling for Event Forecasting using Deep RL. 951-960 - Nontawat Charoenphakdee, Jongyeong Lee, Masashi Sugiyama:

On Symmetric Losses for Learning from Corrupted Labels. 961-970 - Niladri S. Chatterji, Aldo Pacchiano, Peter L. Bartlett:

Online learning with kernel losses. 971-980 - Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, Vineeth N. Balasubramanian:

Neural Network Attributions: A Causal Perspective. 981-990 - Arghya Roy Chaudhuri, Shivaram Kalyanakrishnan:

PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits. 991-1000 - George H. Chen:

Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates. 1001-1010 - Wilson Ye Chen, Alessandro Barp, François-Xavier Briol, Jackson Gorham, Mark A. Girolami, Lester W. Mackey, Chris J. Oates:

Stein Point Markov Chain Monte Carlo. 1011-1021 - Xinshi Chen, Hanjun Dai, Le Song:

Particle Flow Bayes' Rule. 1022-1031 - Xingyu Chen, Brandon Fain, Liang Lyu, Kamesh Munagala:

Proportionally Fair Clustering. 1032-1041 - Jinglin Chen, Nan Jiang:

Information-Theoretic Considerations in Batch Reinforcement Learning. 1042-1051 - Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, Le Song:

Generative Adversarial User Model for Reinforcement Learning Based Recommendation System. 1052-1061 - Pengfei Chen, Benben Liao, Guangyong Chen, Shengyu Zhang:

Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels. 1062-1070 - Yucheng Chen, Matus Telgarsky, Chao Zhang, Bolton Bailey, Daniel Hsu, Jian Peng:

A Gradual, Semi-Discrete Approach to Generative Network Training via Explicit Wasserstein Minimization. 1071-1080 - Xinyang Chen, Sinan Wang, Mingsheng Long

, Jianmin Wang
:
Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation. 1081-1090 - Pin-Yu Chen, Lingfei Wu, Sijia Liu, Indika Rajapakse:

Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications. 1091-1101 - Zaiyi Chen, Yi Xu, Haoyuan Hu, Tianbao Yang:

Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number. 1102-1111 - Ziliang Chen, Zhanfu Yang, Xiaoxi Wang, Xiaodan Liang, Xiaopeng Yan, Guanbin Li, Liang Lin:

Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching. 1112-1121 - Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh:

Robust Decision Trees Against Adversarial Examples. 1122-1131 - Xiaoshuang Chen, Yin Zheng, Jiaxing Wang, Wenye Ma, Junzhou Huang:

RaFM: Rank-Aware Factorization Machines. 1132-1140 - Richard Cheng, Abhinav Verma

, Gábor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick:
Control Regularization for Reduced Variance Reinforcement Learning. 1141-1150 - Ching-An Cheng, Xinyan Yan, Nathan D. Ratliff, Byron Boots:

Predictor-Corrector Policy Optimization. 1151-1161 - Julien Chiquet, Stéphane Robin, Mahendra Mariadassou:

Variational Inference for sparse network reconstruction from count data. 1162-1171 - Uthsav Chitra, Benjamin J. Raphael:

Random Walks on Hypergraphs with Edge-Dependent Vertex Weights. 1172-1181 - Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, Stefano Ermon:

Neural Joint Source-Channel Coding. 1182-1192 - Anna Choromanska, Benjamin Cowen, Sadhana Kumaravel, Ronny Luss, Mattia Rigotti, Irina Rish, Paolo Diachille, Viatcheslav Gurev, Brian Kingsbury, Ravi Tejwani, Djallel Bouneffouf:

Beyond Backprop: Online Alternating Minimization with Auxiliary Variables. 1193-1202 - Krzysztof Choromanski, Mark Rowland, Wenyu Chen, Adrian Weller:

Unifying Orthogonal Monte Carlo Methods. 1203-1212 - Casey Chu, Jose H. Blanchet, Peter W. Glynn:

Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning. 1213-1222 - Eric Chu, Peter J. Liu:

MeanSum: A Neural Model for Unsupervised Multi-Document Abstractive Summarization. 1223-1232 - Hye Won Chung, Ji Oon Lee:

Weak Detection of Signal in the Spiked Wigner Model. 1233-1241 - Ferdinando Cicalese, Eduardo Sany Laber, Lucas Murtinho:

New results on information theoretic clustering. 1242-1251 - Carlos Cinelli, Daniel Kumor, Bryant Chen, Judea Pearl, Elias Bareinboim:

Sensitivity Analysis of Linear Structural Causal Models. 1252-1261 - Kenneth L. Clarkson, Ruosong Wang, David P. Woodruff:

Dimensionality Reduction for Tukey Regression. 1262-1271 - Stéphan Clémençon, Pierre Laforgue, Patrice Bertail:

On Medians of (Randomized) Pairwise Means. 1272-1281 - Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, John Schulman:

Quantifying Generalization in Reinforcement Learning. 1282-1289 - Eldan Cohen, J. Christopher Beck:

Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models. 1290-1299 - Alon Cohen, Tomer Koren, Yishay Mansour:

Learning Linear-Quadratic Regulators Efficiently with only √T Regret. 1300-1309 - Jeremy Cohen, Elan Rosenfeld, J. Zico Kolter:

Certified Adversarial Robustness via Randomized Smoothing. 1310-1320 - Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, Max Welling:

Gauge Equivariant Convolutional Networks and the Icosahedral CNN. 1321-1330 - Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, Mohamed Chetouani:

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning. 1331-1340 - Ronan Collobert, Awni Y. Hannun, Gabriel Synnaeve:

A fully differentiable beam search decoder. 1341-1350 - Robert Cornish, Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, Arnaud Doucet:

Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets. 1351-1360 - Juan D. Correa, Jin Tian, Elias Bareinboim:

Adjustment Criteria for Generalizing Experimental Findings. 1361-1369 - Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Scott Yang:

Online Learning with Sleeping Experts and Feedback Graphs. 1370-1378 - Corinna Cortes, Giulia DeSalvo, Mehryar Mohri, Ningshan Zhang, Claudio Gentile:

Active Learning with Disagreement Graphs. 1379-1387 - Andrew Cotter, Maya R. Gupta, Heinrich Jiang, Erez Louidor, James Muller, Taman Narayan, Serena Lutong Wang, Tao Zhu:

Shape Constraints for Set Functions. 1388-1396 - Andrew Cotter, Maya R. Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Lutong Wang, Blake E. Woodworth, Seungil You:

Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints. 1397-1405 - Zac Cranko, Aditya Krishna Menon, Richard Nock, Cheng Soon Ong, Zhan Shi, Christian J. Walder:

Monge blunts Bayes: Hardness Results for Adversarial Training. 1406-1415 - Zac Cranko, Richard Nock:

Boosted Density Estimation Remastered. 1416-1425 - Victoria G. Crawford, Alan Kuhnle, My T. Thai:

Submodular Cost Submodular Cover with an Approximate Oracle. 1426-1435 - Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann Pitassi, Richard S. Zemel:

Flexibly Fair Representation Learning by Disentanglement. 1436-1445 - Ashok Cutkosky

:
Anytime Online-to-Batch, Optimism and Acceleration. 1446-1454 - Ashok Cutkosky

, Tamás Sarlós:
Matrix-Free Preconditioning in Online Learning. 1455-1464 - Milan Cvitkovic, Günther Koliander:

Minimal Achievable Sufficient Statistic Learning. 1465-1474 - Milan Cvitkovic, Badal Singh, Animashree Anandkumar:

Open Vocabulary Learning on Source Code with a Graph-Structured Cache. 1475-1485 - Robert Dadashi, Marc G. Bellemare, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans:

The Value Function Polytope in Reinforcement Learning. 1486-1495 - Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, Patrick Jaillet:

Bayesian Optimization Meets Bayesian Optimal Stopping. 1496-1506 - Christoph Dann, Lihong Li, Wei Wei, Emma Brunskill:

Policy Certificates: Towards Accountable Reinforcement Learning. 1507-1516 - Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, Christopher Ré:

Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations. 1517-1527 - Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, Christopher Ré:

A Kernel Theory of Modern Data Augmentation. 1528-1537 - Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, Joelle Pineau:

TarMAC: Targeted Multi-Agent Communication. 1538-1546 - Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, Xiaojin Zhu:

Teaching a black-box learner. 1547-1555 - Gwendoline de Bie, Gabriel Peyré, Marco Cuturi:

Stochastic Deep Networks. 1556-1565 - Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil:

Learning-to-Learn Stochastic Gradient Descent with Biased Regularization. 1566-1575 - Onur Dereli, Ceyda Oguz, Mehmet Gönen:

A Multitask Multiple Kernel Learning Algorithm for Survival Analysis with Application to Cancer Biology. 1576-1585 - Nichita Diaconu, Daniel E. Worrall:

Learning to Convolve: A Generalized Weight-Tying Approach. 1586-1595 - Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart:

Sever: A Robust Meta-Algorithm for Stochastic Optimization. 1596-1606 - Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, Chenggang Yan:

Approximated Oracle Filter Pruning for Destructive CNN Width Optimization. 1607-1616 - Tianyu Ding, Zhihui Zhu, Tianjiao Ding, Yunchen Yang, Daniel P. Robinson, Manolis C. Tsakiris, René Vidal:

Noisy Dual Principal Component Pursuit. 1617-1625 - Thinh T. Doan, Siva Theja Maguluri, Justin Romberg:

Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning. 1626-1635 - Andreas Doerr, Michael Volpp, Marc Toussaint, Sebastian Trimpe, Christian Daniel:

Trajectory-Based Off-Policy Deep Reinforcement Learning. 1636-1645 - Elvis Dohmatob:

Generalized No Free Lunch Theorem for Adversarial Robustness. 1646-1654 - Simon S. Du, Wei Hu:

Width Provably Matters in Optimization for Deep Linear Neural Networks. 1655-1664 - Simon S. Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudík, John Langford:

Provably efficient RL with Rich Observations via Latent State Decoding. 1665-1674 - Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, Xiyu Zhai:

Gradient Descent Finds Global Minima of Deep Neural Networks. 1675-1685 - Junliang Du, Antonio R. Linero:

Incorporating Grouping Information into Bayesian Decision Tree Ensembles. 1686-1695 - Yilun Du, Karthik Narasimhan:

Task-Agnostic Dynamics Priors for Deep Reinforcement Learning. 1696-1705 - Paul Duetting, Zhe Feng, Harikrishna Narasimhan, David C. Parkes, Sai Srivatsa Ravindranath:

Optimal Auctions through Deep Learning. 1706-1715 - Yonatan Dukler, Wuchen Li, Alex Tong Lin, Guido Montúfar:

Wasserstein of Wasserstein Loss for Learning Generative Models. 1716-1725 - Lea Duncker, Gergo Bohner, Julien Boussard, Maneesh Sahani:

Learning interpretable continuous-time models of latent stochastic dynamical systems. 1726-1734 - Conor Durkan, Charlie Nash:

Autoregressive Energy Machines. 1735-1744 - Adam Dziedzic

, John Paparrizos, Sanjay Krishnan, Aaron J. Elmore
, Michael J. Franklin:
Band-limited Training and Inference for Convolutional Neural Networks. 1745-1754 - Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, Charles L. Isbell Jr.:

Imitating Latent Policies from Observation. 1755-1763 - Hubert Eichner, Tomer Koren, Brendan McMahan, Nathan Srebro, Kunal Talwar:

Semi-Cyclic Stochastic Gradient Descent. 1764-1773 - Mohamed Elfeki, Camille Couprie, Morgane Rivière, Mohamed Elhoseiny:

GDPP: Learning Diverse Generations using Determinantal Point Processes. 1774-1783 - Ehsan Elhamifar:

Sequential Facility Location: Approximate Submodularity and Greedy Algorithm. 1784-1793 - Alina Ene, Adrian Vladu:

Improved Convergence for $\ell_1$ and $\ell_∞$ Regression via Iteratively Reweighted Least Squares. 1794-1801 - Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, Aleksander Madry:

Exploring the Landscape of Spatial Robustness. 1802-1811 - Carlos Esteves, Avneesh Sud, Zhengyi Luo, Kostas Daniilidis, Ameesh Makadia:

Cross-Domain 3D Equivariant Image Embeddings. 1812-1822 - Christian Etmann, Sebastian Lunz, Peter Maass, Carola Schönlieb:

On the Connection Between Adversarial Robustness and Saliency Map Interpretability. 1823-1832 - Matthew Fahrbach, Vahab S. Mirrokni, Morteza Zadimoghaddam:

Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity. 1833-1842 - Yifeng Fan, Zhizhen Zhao:

Multi-Frequency Vector Diffusion Maps. 1843-1852 - Gabriele Farina, Christian Kroer, Noam Brown, Tuomas Sandholm:

Stable-Predictive Optimistic Counterfactual Regret Minimization. 1853-1862 - Gabriele Farina, Christian Kroer, Tuomas Sandholm:

Regret Circuits: Composability of Regret Minimizers. 1863-1872 - Mehdi Fatemi, Shikhar Sharma, Harm van Seijen, Samira Ebrahimi Kahou:

Dead-ends and Secure Exploration in Reinforcement Learning. 1873-1881 - Ilya Feige:

Invariant-Equivariant Representation Learning for Multi-Class Data. 1882-1891 - Vitaly Feldman, Roy Frostig, Moritz Hardt:

The advantages of multiple classes for reducing overfitting from test set reuse. 1892-1900 - Raphaël Féraud, Réda Alami, Romain Laroche:

Decentralized Exploration in Multi-Armed Bandits. 1901-1909 - Olivier Fercoq, Ahmet Alacaoglu, Ion Necoara, Volkan Cevher

:
Almost surely constrained convex optimization. 1910-1919 - Chelsea Finn, Aravind Rajeswaran, Sham M. Kakade, Sergey Levine:

Online Meta-Learning. 1920-1930 - Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin T. Vechev:

DL2: Training and Querying Neural Networks with Logic. 1931-1941 - Jakob N. Foerster, H. Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew M. Botvinick, Michael Bowling:

Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning. 1942-1951 - Edwin Fong, Simon Lyddon, Chris C. Holmes:

Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap. 1952-1962 - Vojtech Franc, Daniel Prusa:

On discriminative learning of prediction uncertainty. 1963-1971 - Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He:

Learning Discrete Structures for Graph Neural Networks. 1972-1982 - Dror Freirich, Tzahi Shimkin, Ron Meir, Aviv Tamar:

Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN. 1983-1992 - Thomas Frerix, Joan Bruna:

Approximating Orthogonal Matrices with Effective Givens Factorization. 1993-2001 - Charlie Frogner, Tomaso A. Poggio:

Fast and Flexible Inference of Joint Distributions from their Marginals. 2002-2011 - Nicholas Frosst, Nicolas Papernot, Geoffrey E. Hinton:

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss. 2012-2020 - Justin Fu, Aviral Kumar, Matthew Soh, Sergey Levine:

Diagnosing Bottlenecks in Deep Q-learning Algorithms. 2021-2030 - Szu-Wei Fu, Chien-Feng Liao, Yu Tsao, Shou-De Lin:

MetricGAN: Generative Adversarial Networks based Black-box Metric Scores Optimization for Speech Enhancement. 2031-2041 - Kaito Fujii, Shinsaku Sakaue:

Beyond Adaptive Submodularity: Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio. 2042-2051 - Scott Fujimoto, David Meger, Doina Precup:

Off-Policy Deep Reinforcement Learning without Exploration. 2052-2062 - Shani Gamrian, Yoav Goldberg:

Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation. 2063-2072 - Octavian Ganea, Sylvain Gelly, Gary Bécigneul, Aliaksei Severyn:

Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities. 2073-2082 - Hongyang Gao, Shuiwang Ji:

Graph U-Nets. 2083-2092 - Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, Shunkang Zhang:

Deep Generative Learning via Variational Gradient Flow. 2093-2101 - Weihao Gao, Yu-Han Liu, Chong Wang, Sewoong Oh:

Rate Distortion For Model Compression: From Theory To Practice. 2102-2111 - Hongchang Gao, Jian Pei, Heng Huang:

Demystifying Dropout. 2112-2121 - Feng Gao, Guy Wolf, Matthew J. Hirn:

Geometric Scattering for Graph Data Analysis. 2122-2131 - Tingran Gao, Zhizhen Zhao:

Multi-Frequency Phase Synchronization. 2132-2141 - Nidham Gazagnadou, Robert M. Gower, Joseph Salmon:

Optimal Mini-Batch and Step Sizes for SAGA. 2142-2150 - Yonatan Geifman, Ran El-Yaniv:

SelectiveNet: A Deep Neural Network with an Integrated Reject Option. 2151-2159 - Matthieu Geist, Bruno Scherrer, Olivier Pietquin:

A Theory of Regularized Markov Decision Processes. 2160-2169 - Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare:

DeepMDP: Learning Continuous Latent Space Models for Representation Learning. 2170-2179 - Sinong Geng, Minhao Yan, Mladen Kolar, Sanmi Koyejo:

Partially Linear Additive Gaussian Graphical Models. 2180-2190 - Hossein Shokri Ghadikolaei, Hadi G. Ghauch, Carlo Fischione, Mikael Skoglund:

Learning and Data Selection in Big Datasets. 2191-2200 - Mohsen Ghaffari, Silvio Lattanzi, Slobodan Mitrovic:

Improved Parallel Algorithms for Density-Based Network Clustering. 2201-2210 - Badih Ghazi, Rina Panigrahy, Joshua R. Wang:

Recursive Sketches for Modular Deep Learning. 2211-2220 - Behrooz Ghorbani, Hamid Javadi, Andrea Montanari:

An Instability in Variational Inference for Topic Models. 2221-2231 - Behrooz Ghorbani, Shankar Krishnan, Ying Xiao:

An Investigation into Neural Net Optimization via Hessian Eigenvalue Density. 2232-2241 - Amirata Ghorbani, James Y. Zou:

Data Shapley: Equitable Valuation of Data for Machine Learning. 2242-2251 - Dar Gilboa, Sam Buchanan, John Wright:

Efficient Dictionary Learning with Gradient Descent. 2252-2259 - Jennifer Gillenwater, Alex Kulesza, Zelda Mariet, Sergei Vassilvitskii:

A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes. 2260-2268 - Jon Gillick, Adam Roberts, Jesse H. Engel, Douglas Eck, David Bamman:

Learning to Groove with Inverse Sequence Transformations. 2269-2279 - Justin Gilmer, Nicolas Ford, Nicholas Carlini, Ekin D. Cubuk:

Adversarial Examples Are a Natural Consequence of Test Error in Noise. 2280-2289 - Jaime Roquero Gimenez, James Y. Zou:

Discovering Conditionally Salient Features with Statistical Guarantees. 2290-2298 - Ziv Goldfeld, Ewout van den Berg, Kristjan H. Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury, Yury Polyanskiy:

Estimating Information Flow in Deep Neural Networks. 2299-2308 - Adam Golinski, Frank Wood, Tom Rainforth:

Amortized Monte Carlo Integration. 2309-2318 - Sreenivas Gollapudi, Debmalya Panigrahi:

Online Algorithms for Rent-Or-Buy with Expert Advice. 2319-2327 - Alexander Golovnev, Dávid Pál, Balázs Szörényi:

The information-theoretic value of unlabeled data in semi-supervised learning. 2328-2336 - Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, Tie-Yan Liu:

Efficient Training of BERT by Progressively Stacking. 2337-2346 - ChengYue Gong, Jian Peng, Qiang Liu:

Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization. 2347-2356 - Paula Gordaliza, Eustasio del Barrio, Fabrice Gamboa, Jean-Michel Loubes:

Obtaining Fairness using Optimal Transport Theory. 2357-2365 - Omer Gottesman, Yao Liu, Scott Sussex, Emma Brunskill, Finale Doshi-Velez:

Combining parametric and nonparametric models for off-policy evaluation. 2366-2375 - Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, Stefan Lee:

Counterfactual Visual Explanations. 2376-2384 - James A. Grant, Alexis Boukouvalas, Ryan-Rhys Griffiths, David S. Leslie, Sattar Vakili, Enrique Munoz de Cote:

Adaptive Sensor Placement for Continuous Spaces. 2385-2393 - Alexander Greaves-Tunnell, Zaïd Harchaoui:

A Statistical Investigation of Long Memory in Language and Music. 2394-2403 - David S. Greenberg, Marcel Nonnenmacher, Jakob H. Macke:

Automatic Posterior Transformation for Likelihood-Free Inference. 2404-2414 - Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, Ron Kimmel:

Learning to Optimize Multigrid PDE Solvers. 2415-2423 - Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran, Loic Matthey, Matthew M. Botvinick, Alexander Lerchner:

Multi-Object Representation Learning with Iterative Variational Inference. 2424-2433 - Aditya Grover, Aaron Zweig, Stefano Ermon:

Graphite: Iterative Generative Modeling of Graphs. 2434-2444 - Jiaqi Gu, Guosheng Yin:

Fast Algorithm for Generalized Multinomial Models with Ranking Data. 2445-2453 - Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin Chen, Di He, Xing Xie:

Towards a Deep and Unified Understanding of Deep Neural Models in NLP. 2454-2463 - Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Theophane Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, Timothy P. Lillicrap:

An Investigation of Model-Free Planning. 2464-2473 - Limor Gultchin, Genevieve Patterson, Nancy Baym, Nathaniel Swinger, Adam Kalai:

Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops. 2474-2483 - Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, Kilian Q. Weinberger:

Simple Black-box Adversarial Attacks. 2484-2493 - Tian Guo, Tao Lin, Nino Antulov-Fantulin:

Exploring interpretable LSTM neural networks over multi-variable data. 2494-2504 - Lingbing Guo, Zequn Sun, Wei Hu:

Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs. 2505-2514 - Albert Gural, Boris Murmann:

Memory-Optimal Direct Convolutions for Maximizing Classification Accuracy in Embedded Applications. 2515-2524 - Eldad Haber, Keegan Lensink, Eran Treister, Lars Ruthotto:

IMEXnet A Forward Stable Deep Neural Network. 2525-2534 - Guy Hacohen, Daphna Weinshall:

On The Power of Curriculum Learning in Training Deep Networks. 2535-2544 - Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, Viveck R. Cadambe:

Trading Redundancy for Communication: Speeding up Distributed SGD for Non-convex Optimization. 2545-2554 - Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, James Davidson:

Learning Latent Dynamics for Planning from Pixels. 2555-2565 - Tavi Halperin, Ariel Ephrat, Yedid Hoshen:

Neural Separation of Observed and Unobserved Distributions. 2566-2575 - Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu, Tong Zhang:

Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI. 2576-2585 - Seungyul Han, Youngchul Sung:

Dimension-Wise Importance Sampling Weight Clipping for Sample-Efficient Reinforcement Learning. 2586-2595 - Boris Hanin, David Rolnick:

Complexity of Linear Regions in Deep Networks. 2596-2604 - Josiah Hanna, Scott Niekum, Peter Stone:

Importance Sampling Policy Evaluation with an Estimated Behavior Policy. 2605-2613 - Yi Hao, Alon Orlitsky:

Doubly-Competitive Distribution Estimation. 2614-2623 - Jeff Z. HaoChen, Suvrit Sra:

Random Shuffling Beats SGD after Finite Epochs. 2624-2633 - Chris Harshaw, Moran Feldman, Justin Ward, Amin Karbasi:

Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications. 2634-2643 - Anna Harutyunyan, Peter Vrancx, Philippe Hamel, Ann Nowé, Doina Precup:

Per-Decision Option Discounting. 2644-2652 - Abolfazl Hashemi, Mahsa Ghasemi, Haris Vikalo, Ufuk Topcu:

Submodular Observation Selection and Information Gathering for Quadratic Models. 2653-2662 - Doron Haviv, Alexander Rivkind, Omri Barak:

Understanding and Controlling Memory in Recurrent Neural Networks. 2663-2671 - Soufiane Hayou, Arnaud Doucet, Judith Rousseau:

On the Impact of the Activation function on Deep Neural Networks Training. 2672-2680 - Elad Hazan, Sham M. Kakade, Karan Singh, Abby Van Soest:

Provably Efficient Maximum Entropy Exploration. 2681-2691 - Hoda Heidari, Vedant Nanda, Krishna P. Gummadi

:
On the Long-term Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segregation through Social Learning. 2692-2701 - Julien M. Hendrickx, Alexander Olshevsky, Venkatesh Saligrama:

Graph Resistance and Learning from Pairwise Comparisons. 2702-2711 - Dan Hendrycks, Kimin Lee, Mantas Mazeika:

Using Pre-Training Can Improve Model Robustness and Uncertainty. 2712-2721 - Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, Pieter Abbeel:

Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design. 2722-2730 - Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, Pieter Abbeel:

Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules. 2731-2741 - Quang Minh Hoang, Trong Nghia Hoang, Bryan Kian Hsiang Low, Carl Kingsford:

Collective Model Fusion for Multiple Black-Box Experts. 2742-2750 - Christoph D. Hofer, Roland Kwitt, Marc Niethammer, Mandar Dixit:

Connectivity-Optimized Representation Learning via Persistent Homology. 2751-2760 - Matthew J. Holland, Kazushi Ikeda:

Better generalization with less data using robust gradient descent. 2761-2770 - Emiel Hoogeboom, Rianne van den Berg, Max Welling:

Emerging Convolutions for Generative Normalizing Flows. 2771-2780 - Samuel Horváth, Peter Richtárik:

Nonconvex Variance Reduced Optimization with Arbitrary Sampling. 2781-2789 - Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly:

Parameter-Efficient Transfer Learning for NLP. 2790-2799 - Ping-Chun Hsieh, Xi Liu, Anirban Bhattacharya, P. R. Kumar:

Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging. 2800-2809 - Ya-Ping Hsieh, Chen Liu, Volkan Cevher

:
Finding Mixed Nash Equilibria of Generative Adversarial Networks. 2810-2819 - Yu-Guan Hsieh, Gang Niu, Masashi Sugiyama:

Classification from Positive, Unlabeled and Biased Negative Data. 2820-2829 - Kelvin Hsu, Fabio Ramos:

Bayesian Deconditional Kernel Mean Embeddings. 2830-2838 - Feihu Huang, Songcan Chen, Heng Huang:

Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization. 2839-2848 - Jiabo Huang, Qi Dong, Shaogang Gong, Xiatian Zhu:

Unsupervised Deep Learning by Neighbourhood Discovery. 2849-2858 - Kejun Huang, Xiao Fu:

Detecting Overlapping and Correlated Communities without Pure Nodes: Identifiability and Algorithm. 2859-2868 - Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, Aaron C. Courville:

Hierarchical Importance Weighted Autoencoders. 2869-2878 - Lingxiao Huang, Nisheeth K. Vishnoi:

Stable and Fair Classification. 2879-2890 - Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Ángel Bautista, Shih-Yu Sun, Carlos Guestrin, Joshua M. Susskind:

Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment. 2891-2900 - Biwei Huang, Kun Zhang, Mingming Gong, Clark Glymour:

Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models. 2901-2910 - Jonathan J. Hunt, André Barreto, Timothy P. Lillicrap, Nicolas Heess:

Composing Entropic Policies using Divergence Correction. 2911-2920 - Uiwon Hwang, Dahuin Jung, Sungroh Yoon:

HexaGAN: Generative Adversarial Nets for Real World Classification. 2921-2930 - Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:

Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models. 2931-2940 - Craig Innes, Alex Lascarides:

Learning Structured Decision Problems with Unawareness. 2941-2950 - Niels Bruun Ipsen, Lars Kai Hansen

:
Phase transition in PCA with missing data: Reduced signal-to-noise ratio, not sample size! 2951-2960 - Shariq Iqbal, Fei Sha:

Actor-Attention-Critic for Multi-Agent Reinforcement Learning. 2961-2970 - Takashi Ishida, Gang Niu, Aditya Krishna Menon, Masashi Sugiyama:

Complementary-Label Learning for Arbitrary Losses and Models. 2971-2980 - Amin Jaber, Jiji Zhang, Elias Bareinboim:

Causal Identification under Markov Equivalence: Completeness Results. 2981-2989 - Alexis Jacq, Matthieu Geist, Ana Paiva, Olivier Pietquin:

Learning from a Learner. 2990-2999 - Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:

Differentially Private Fair Learning. 3000-3008 - Priyank Jaini, Kira A. Selby, Yaoliang Yu:

Sum-of-Squares Polynomial Flow. 3009-3018 - Jennifer Jang, Heinrich Jiang:

DBSCAN++: Towards fast and scalable density clustering. 3019-3029 - Yunhun Jang, Hankook Lee, Sung Ju Hwang, Jinwoo Shin:

Learning What and Where to Transfer. 3030-3039 - Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Çaglar Gülçehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas:

Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning. 3040-3049 - Nathan Jay, Noga H. Rotman, Brighten Godfrey, Michael Schapira, Aviv Tamar:

A Deep Reinforcement Learning Perspective on Internet Congestion Control. 3050-3059 - Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Juhan Nam:

Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance. 3060-3070 - Taewon Jeong, Youngmin Lee, Heeyoung Kim:

Ladder Capsule Network. 3071-3079 - Jongheon Jeong, Jinwoo Shin:

Training CNNs with Selective Allocation of Channels. 3080-3090 - Yeonwoo Jeong, Hyun Oh Song:

Learning Discrete and Continuous Factors of Data via Alternating Disentanglement. 3091-3099 - Kaiyi Ji, Zhe Wang, Yi Zhou, Yingbin Liang:

Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization. 3100-3109 - Zhengyao Jiang, Shan Luo:

Neural Logic Reinforcement Learning. 3110-3119 - Yuu Jinnai, David Abel, David Ellis Hershkowitz, Michael L. Littman, George Dimitri Konidaris:

Finding Options that Minimize Planning Time. 3120-3129 - Yuu Jinnai, Jee Won Park, David Abel, George Dimitri Konidaris:

Discovering Options for Exploration by Minimizing Cover Time. 3130-3139 - Wittawat Jitkrittum, Patsorn Sangkloy, Muhammad Waleed Gondal, Amit Raj, James Hays, Bernhard Schölkopf:

Kernel Mean Matching for Content Addressability of GANs. 3140-3151 - David John, Vincent Heuveline

, Michael Schober:
GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver. 3152-3162 - Kwang-Sung Jun, Rebecca Willett, Stephen J. Wright, Robert D. Nowak:

Bilinear Bandits with Low-rank Structure. 3163-3172 - Anson Kahng, Min Kyung Lee, Ritesh Noothigattu, Ariel D. Procaccia, Christos-Alexandros Psomas:

Statistical Foundations of Virtual Democracy. 3173-3182 - Hiroshi Kajino:

Molecular Hypergraph Grammar with Its Application to Molecular Optimization. 3183-3191 - Dimitris Kalimeris, Gal Kaplun, Yaron Singer:

Robust Influence Maximization for Hyperparametric Models. 3192-3200 - Nathan Kallus:

Classifying Treatment Responders Under Causal Effect Monotonicity. 3201-3210 - Ashwin Kalyan, Peter Anderson, Stefan Lee, Dhruv Batra:

Trainable Decoding of Sets of Sequences for Neural Sequence Models. 3211-3221 - Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:

Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments. 3222-3232 - Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer:

Differentially Private Learning of Geometric Concepts. 3233-3241 - Christos Kaplanis, Murray Shanahan, Claudia Clopath:

Policy Consolidation for Continual Reinforcement Learning. 3242-3251 - Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, Martin Jaggi:

Error Feedback Fixes SignSGD and other Gradient Compression Schemes. 3252-3261 - Hiroyuki Kasai, Pratik Jawanpuria, Bamdev Mishra:

Riemannian adaptive stochastic gradient algorithms on matrix manifolds. 3262-3271 - Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, Wojciech Matusik:

Neural Inverse Knitting: From Images to Manufacturing Instructions. 3272-3281 - Angelos Katharopoulos, François Fleuret:

Processing Megapixel Images with Deep Attention-Sampling Models. 3282-3291 - Ashish Katiyar, Jessica Hoffmann, Constantine Caramanis:

Robust Estimation of Tree Structured Gaussian Graphical Models. 3292-3300 - Yigitcan Kaya, Sanghyun Hong, Tudor Dumitras:

Shallow-Deep Networks: Understanding and Mitigating Network Overthinking. 3301-3310 - Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, Amin Karbasi:

Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity. 3311-3320 - Michal Kempka, Wojciech Kotlowski, Manfred K. Warmuth:

Adaptive Scale-Invariant Online Algorithms for Learning Linear Models. 3321-3330 - Tom Kenter, Vincent Wan, Chun-an Chan, Rob Clark, Jakub Vit:

CHiVE: Varying Prosody in Speech Synthesis with a Linguistically Driven Dynamic Hierarchical Conditional Variational Network. 3331-3340 - Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Tumer, Santiago Miret, Yinyin Liu, Kagan Tumer:

Collaborative Evolutionary Reinforcement Learning. 3341-3350 - Renata Khasanova, Pascal Frossard:

Geometry Aware Convolutional Filters for Omnidirectional Images Representation. 3351-3359 - Hyoungseok Kim, Jaekyeom Kim

, Yeonwoo Jeong, Sergey Levine, Hyun Oh Song:
EMI: Exploration with Mutual Information. 3360-3369 - Sungwon Kim, Sang-gil Lee, Jongyoon Song, Jaehyeon Kim, Sungroh Yoon:

FloWaveNet : A Generative Flow for Raw Audio. 3370-3378 - Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, Gunhee Kim:

Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty. 3379-3388 - Gi-Soo Kim, Myunghee Cho Paik:

Contextual Multi-armed Bandit Algorithm for Semiparametric Reward Model. 3389-3397 - Jisu Kim, Jaehyeok Shin, Alessandro Rinaldo, Larry A. Wasserman:

Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension. 3398-3407 - Friso H. Kingma, Pieter Abbeel, Jonathan Ho:

Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables. 3408-3417 - Thomas Kipf, Yujia Li, Hanjun Dai, Vinícius Flores Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefenstette, Pushmeet Kohli, Peter W. Battaglia:

CompILE: Compositional Imitation Learning and Execution. 3418-3428 - Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, Andreas Krause:

Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces. 3429-3438 - Ross Kleiman, David Page:

AUCμ: A Performance Metric for Multi-Class Machine Learning Models. 3439-3447 - Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:

Fair k-Center Clustering for Data Summarization. 3448-3457 - Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, Jamie Morgenstern:

Guarantees for Spectral Clustering with Fairness Constraints. 3458-3467 - Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, Dahua Lin:

POPQORN: Quantifying Robustness of Recurrent Neural Networks. 3468-3477 - Anastasia Koloskova, Sebastian U. Stich, Martin Jaggi:

Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication. 3478-3487 - Nikola Konstantinov, Christoph Lampert:

Robust Learning from Untrusted Sources. 3488-3498 - Wouter Kool, Herke van Hoof, Max Welling:

Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. 3499-3508 - Animesh Koratana, Daniel Kang, Peter Bailis, Matei Zaharia:

LIT: Learned Intermediate Representation Training for Model Compression. 3509-3518 - Simon Kornblith, Mohammad Norouzi, Honglak Lee, Geoffrey E. Hinton:

Similarity of Neural Network Representations Revisited. 3519-3529 - Alexey Kroshnin, Nazarii Tupitsa, Darina Dvinskikh, Pavel E. Dvurechensky, Alexander V. Gasnikov, Cesar A. Uribe:

On the Complexity of Approximating Wasserstein Barycenters. 3530-3540 - Andrei Kulunchakov, Julien Mairal:

Estimate Sequences for Variance-Reduced Stochastic Composite Optimization. 3541-3550 - Ravi Kumar, Rina Panigrahy, Ali Rahimi, David P. Woodruff:

Faster Algorithms for Binary Matrix Factorization. 3551-3559 - Daniel Kunin, Jonathan M. Bloom, Aleksandrina Goeva, Cotton Seed:

Loss Landscapes of Regularized Linear Autoencoders. 3560-3569 - Han-Wen Kuo, Yenson Lau, Yuqian Zhang, John Wright:

Geometry and Symmetry in Short-and-Sparse Deconvolution. 3570-3580 - Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly:

A Large-Scale Study on Regularization and Normalization in GANs. 3581-3590 - Matt J. Kusner, Chris Russell, Joshua R. Loftus

, Ricardo Silva:
Making Decisions that Reduce Discriminatory Impacts. 3591-3600 - Branislav Kveton, Csaba Szepesvári, Sharan Vaswani, Zheng Wen, Tor Lattimore, Mohammad Ghavamzadeh:

Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits. 3601-3610 - Antoine Labatie:

Characterizing Well-Behaved vs. Pathological Deep Neural Networks. 3611-3621 - Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas, Yoshua Bengio, Michael Mozer:

State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations. 3622-3631 - Sylvain Lamprier:

A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion. 3632-3641 - Joong-Ho Won, Jason Xu, Kenneth Lange:

Projection onto Minkowski Sums with Application to Constrained Learning. 3642-3651 - Romain Laroche, Paul Trichelair, Remi Tachet des Combes:

Safe Policy Improvement with Baseline Bootstrapping. 3652-3661 - Silvio Lattanzi, Christian Sohler

:
A Better k-means++ Algorithm via Local Search. 3662-3671 - Marc Teva Law, Renjie Liao, Jake Snell, Richard S. Zemel:

Lorentzian Distance Learning for Hyperbolic Representations. 3672-3681 - Andrew R. Lawrence, Carl Henrik Ek, Neill D. F. Campbell:

DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures. 3682-3691 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvári, Gellért Weisz:

POLITEX: Regret Bounds for Policy Iteration using Expert Prediction. 3692-3702 - Hoang Minh Le, Cameron Voloshin, Yisong Yue:

Batch Policy Learning under Constraints. 3703-3712 - Donghwan Lee, Niao He:

Target-Based Temporal-Difference Learning. 3713-3722 - Guang-He Lee, Wengong Jin, David Alvarez-Melis, Tommi S. Jaakkola:

Functional Transparency for Structured Data: a Game-Theoretic Approach. 3723-3733 - Junhyun Lee, Inyeop Lee, Jaewoo Kang:

Self-Attention Graph Pooling. 3734-3743 - Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, Yee Whye Teh:

Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. 3744-3753 - Ching-pei Lee, Stephen J. Wright:

First-Order Algorithms Converge Faster than $O(1/k)$ on Convex Problems. 3754-3762 - Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, Jinwoo Shin:

Robust Inference via Generative Classifiers for Handling Noisy Labels. 3763-3772 - Yifan Lei, Qiang Huang

, Mohan S. Kankanhalli, Anthony K. H. Tung:
Sublinear Time Nearest Neighbor Search over Generalized Weighted Space. 3773-3781 - Matthieu Lerasle, Zoltán Szabó, Timothée Mathieu, Guillaume Lecué:

MONK Outlier-Robust Mean Embedding Estimation by Median-of-Means. 3782-3793 - Mario Lezcano Casado, David Martínez-Rubio

:
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group. 3794-3803 - Yingzhen Li, John Bradshaw, Yash Sharma:

Are Generative Classifiers More Robust to Adversarial Attacks? 3804-3814 - Tongyang Li, Shouvanik Chakrabarti, Xiaodi Wu:

Sublinear quantum algorithms for training linear and kernel-based classifiers. 3815-3824 - Huai-Yu Li, Weiming Dong, Xing Mei, Chongyang Ma, Feiyue Huang, Bao-Gang Hu:

LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning. 3825-3834 - Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli:

Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 3835-3845 - Yang Li, Lukasz Kaiser, Samy Bengio, Si Si:

Area Attention. 3846-3855 - Shuai Li, Tor Lattimore, Csaba Szepesvári:

Online Learning to Rank with Features. 3856-3865 - Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, Boqing Gong:

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks. 3866-3876 - Zehang Richard Li, Tyler H. McCormick, Samuel J. Clark:

Bayesian Joint Spike-and-Slab Graphical Lasso. 3877-3885 - Yuan Li, Benjamin I. P. Rubinstein, Trevor Cohn:

Exploiting Worker Correlation for Label Aggregation in Crowdsourcing. 3886-3895 - Juncheng Li, Frank R. Schmidt, J. Zico Kolter:

Adversarial camera stickers: A physical camera-based attack on deep learning systems. 3896-3904 - Zhu Li, Jean-Francois Ton, Dino Oglic, Dino Sejdinovic

:
Towards a Unified Analysis of Random Fourier Features. 3905-3914 - Yiying Li, Yongxin Yang, Wei Zhou, Timothy M. Hospedales:

Feature-Critic Networks for Heterogeneous Domain Generalization. 3915-3924 - Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, Caiming Xiong:

Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting. 3925-3934 - Qiuwei Li, Zhihui Zhu, Gongguo Tang:

Alternating Minimizations Converge to Second-Order Optimal Solutions. 3935-3943 - Nikolaos Liakopoulos, Apostolos Destounis, Georgios S. Paschos, Thrasyvoulos Spyropoulos, Panayotis Mertikopoulos:

Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints. 3944-3952 - Jan Malte Lichtenberg, Özgür Simsek:

Regularization in directable environments with application to Tetris. 3953-3962 - Valerii Likhosherstov, Yury Maximov, Misha Chertkov:

Inference and Sampling of $K_33$-free Ising Models. 3963-3972 - Shiau Hong Lim, Arnaud Autef:

Kernel-Based Reinforcement Learning in Robust Markov Decision Processes. 3973-3981 - Tianyi Lin, Nhat Ho, Michael I. Jordan:

On Efficient Optimal Transport: An Analysis of Greedy and Accelerated Mirror Descent Algorithms. 3982-3991 - Wu Lin, Mohammad Emtiyaz Khan, Mark Schmidt:

Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations. 3992-4002 - Yanli Liu, Fei Feng, Wotao Yin:

Acceleration of SVRG and Katyusha X by Inexact Preconditioning. 4003-4012 - Hong Liu, Mingsheng Long

, Jianmin Wang
, Michael I. Jordan:
Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers. 4013-4022 - Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael I. Jordan, Jon D. McAuliffe:

Rao-Blackwellized Stochastic Gradients for Discrete Distributions. 4023-4031 - Weiwei Liu, Xiaobo Shen:

Sparse Extreme Multi-label Learning with Oracle Property. 4032-4041 - Fang Liu, Ness B. Shroff:

Data Poisoning Attacks on Stochastic Bandits. 4042-4050 - Lydia T. Liu, Max Simchowitz, Moritz Hardt:

The Implicit Fairness Criterion of Unconstrained Learning. 4051-4060 - Hao Liu, Richard Socher, Caiming Xiong:

Taming MAML: Efficient unbiased meta-reinforcement learning. 4061-4071 - Chen Liu, Ryota Tomioka, Volkan Cevher

:
On Certifying Non-Uniform Bounds against Adversarial Attacks. 4072-4081 - Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, Jun Zhu:

Understanding and Accelerating Particle-Based Variational Inference. 4082-4092 - Chang Liu, Jingwei Zhuo, Jun Zhu:

Understanding MCMC Dynamics as Flows on the Wasserstein Space. 4093-4103 - Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, Fabian-Robert Stöter:

Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions. 4104-4113 - Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. 4114-4124 - Ben London, Ted Sandler:

Bayesian Counterfactual Risk Minimization. 4125-4133 - Songtao Lu, Mingyi Hong, Zhengdao Wang:

PA-GD: On the Convergence of Perturbed Alternating Gradient Descent to Second-Order Stationary Points for Structured Nonconvex Optimization. 4134-4143 - Sidi Lu, Jiayuan Mao, Joshua B. Tenenbaum, Jiajun Wu:

Neurally-Guided Structure Inference. 4144-4153 - Shiyin Lu, Guanghui Wang, Yao Hu, Lijun Zhang:

Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards. 4154-4163 - Sidi Lu, Lantao Yu, Siyuan Feng, Yaoming Zhu, Weinan Zhang:

CoT: Cooperative Training for Generative Modeling of Discrete Data. 4164-4172 - Carlo Lucibello, Luca Saglietti, Yue M. Lu:

Generalized Approximate Survey Propagation for High-Dimensional Estimation. 4173-4182 - Mario Lucic, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly:

High-Fidelity Image Generation With Fewer Labels. 4183-4192 - Giulia Luise, Dimitrios Stamos, Massimiliano Pontil, Carlo Ciliberto:

Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction. 4193-4202 - Ping Luo, Zhanglin Peng, Wenqi Shao, Ruimao Zhang, Jiamin Ren, Lingyun Wu:

Differentiable Dynamic Normalization for Learning Deep Representation. 4203-4211 - Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu:

Disentangled Graph Convolutional Networks. 4212-4221 - Chao Ma, Yingzhen Li, José Miguel Hernández-Lobato:

Variational Implicit Processes. 4222-4233 - Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian Nowozin, Cheng Zhang:

EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. 4234-4243 - Måns Magnusson, Michael Riis Andersen, Johan Jonasson, Aki Vehtari:

Bayesian leave-one-out cross-validation for large data. 4244-4253 - Sepideh Mahabadi, Piotr Indyk, Shayan Oveis Gharan, Alireza Rezaei:

Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm. 4254-4263 - Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, Jascha Sohl-Dickstein:

Guided evolutionary strategies: augmenting random search with surrogate gradients. 4264-4273 - Saeed Mahloujifar, Mohammad Mahmoody, Ameer Mohammed:

Data Poisoning Attacks in Multi-Party Learning. 4274-4283 - Michael W. Mahoney, Charles H. Martin:

Traditional and Heavy Tailed Self Regularization in Neural Network Models. 4284-4293 - Vien V. Mai, Mikael Johansson

:
Curvature-Exploiting Acceleration of Elastic Net Computations. 4294-4303 - Ashok Vardhan Makkuva, Pramod Viswanath, Sreeram Kannan, Sewoong Oh:

Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms. 4304-4313 - Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, Stefano Ermon:

Calibrated Model-Based Deep Reinforcement Learning. 4314-4323 - Timothy A. Mann, Sven Gowal, András György, Huiyi Hu, Ray Jiang, Balaji Lakshminarayanan, Prav Srinivasan:

Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems. 4324-4332 - Stefano Sarao Mannelli

, Florent Krzakala
, Pierfrancesco Urbani, Lenka Zdeborová:
Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models. 4333-4342 - Jingkai Mao, Jakob N. Foerster, Tim Rocktäschel, Maruan Al-Shedivat, Gregory Farquhar, Shimon Whiteson:

A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs. 4343-4351 - Andrés Marafioti, Nathanaël Perraudin

, Nicki Holighaus, Piotr Majdak:
Adversarial Generation of Time-Frequency Features with application in audio synthesis. 4352-4362 - Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman:

On the Universality of Invariant Networks. 4363-4371 - Kaspar Märtens, Kieran R. Campbell, Christopher Yau:

Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models. 4372-4381 - Jérémie Mary, Clément Calauzènes, Noureddine El Karoui:

Fairness-Aware Learning for Continuous Attributes and Treatments. 4382-4391 - Alexander Mathiasen, Kasper Green Larsen, Allan Grønlund:

Optimal Minimal Margin Maximization with Boosting. 4392-4401 - Emile Mathieu, Tom Rainforth, N. Siddharth, Yee Whye Teh:

Disentangling Disentanglement in Variational Autoencoders. 4402-4412 - Pierre-Alexandre Mattei, Jes Frellsen

:
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets. 4413-4423 - Borislav Mavrin, Hengshuai Yao, Linglong Kong, Kaiwen Wu, Yaoliang Yu:

Distributional Reinforcement Learning for Efficient Exploration. 4424-4434 - Ryan McKenna, Daniel Sheldon, Gerome Miklau:

Graphical-model based estimation and inference for differential privacy. 4435-4444 - Geoffrey Roeder, Paul K. Grant, Andrew Phillips, Neil Dalchau, Edward Meeds:

Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems. 4445-4455 - L. Elisa Celis, Anay Mehrotra, Nisheeth K. Vishnoi:

Toward Controlling Discrimination in Online Ad Auctions. 4456-4465 - Nikhil Mehta, Lawrence Carin, Piyush Rai:

Stochastic Blockmodels meet Graph Neural Networks. 4466-4474 - Hongyuan Mei, Guanghui Qin, Jason Eisner:

Imputing Missing Events in Continuous-Time Event Streams. 4475-4485 - Eldad Meller, Alexander Finkelstein, Uri Almog, Mark Grobman:

Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization. 4486-4495 - Facundo Mémoli, Zane T. Smith, Zhengchao Wan:

The Wasserstein Transform. 4496-4504 - Charith Mendis, Alex Renda, Saman P. Amarasinghe, Michael Carbin:

Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks. 4505-4515 - Arthur Mensch, Mathieu Blondel, Gabriel Peyré:

Geometric Losses for Distributional Learning. 4516-4525 - Pedro Mercado, Francesco Tudisco, Matthias Hein:

Spectral Clustering of Signed Graphs via Matrix Power Means. 4526-4536 - Michael R. Metel, Akiko Takeda:

Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization. 4537-4545 - Alberto Maria Metelli, Emanuele Ghelfi, Marcello Restelli:

Reinforcement Learning in Configurable Continuous Environments. 4546-4555 - Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein:

Understanding and correcting pathologies in the training of learned optimizers. 4556-4565 - Raphael A. Meyer, Jean Honorio

:
Optimality Implies Kernel Sum Classifiers are Statistically Efficient. 4566-4574 - Poorya Mianjy, Raman Arora:

On Dropout and Nuclear Norm Regularization. 4575-4584 - Andrew C. Miller, Ziad Obermeyer, John P. Cunningham, Sendhil Mullainathan:

Discriminative Regularization for Latent Variable Models with Applications to Electrocardiography. 4585-4594 - Ardalan Mirshani, Matthew Reimherr, Aleksandra B. Slavkovic:

Formal Privacy for Functional Data with Gaussian Perturbations. 4595-4604 - Gal Mishne, Eric C. Chi, Ronald R. Coifman:

Co-manifold learning with missing data. 4605-4614 - Mehryar Mohri, Gary Sivek, Ananda Theertha Suresh:

Agnostic Federated Learning. 4615-4625 - Thomas Möllenhoff, Daniel Cremers:

Flat Metric Minimization with Applications in Generative Modeling. 4626-4635 - Seungyong Moon, Gaon An, Hyun Oh Song:

Parsimonious Black-Box Adversarial Attacks via Efficient Combinatorial Optimization. 4636-4645 - Hesham Mostafa, Xin Wang:

Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. 4646-4655 - Michael Muehlebach, Michael I. Jordan:

A Dynamical Systems Perspective on Nesterov Acceleration. 4656-4662 - Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, Bruno Ribeiro:

Relational Pooling for Graph Representations. 4663-4673 - Razieh Nabi, Daniel Malinsky, Ilya Shpitser:

Learning Optimal Fair Policies. 4674-4682 - Mor Shpigel Nacson, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, Daniel Soudry:

Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models. 4683-4692 - Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, Masanori Koyama:

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning. 4693-4702 - Dheeraj Nagaraj, Prateek Jain, Praneeth Netrapalli:

SGD without Replacement: Sharper Rates for General Smooth Convex Functions. 4703-4711 - Eric T. Nalisnick, José Miguel Hernández-Lobato, Padhraic Smyth:

Dropout as a Structured Shrinkage Prior. 4712-4722 - Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, Balaji Lakshminarayanan:

Hybrid Models with Deep and Invertible Features. 4723-4732 - Jinseok Nam, Young-Bum Kim, Eneldo Loza Mencía, Sunghyun Park, Ruhi Sarikaya, Johannes Fürnkranz:

Learning Context-dependent Label Permutations for Multi-label Classification. 4733-4742 - Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, Anirban Chakraborty:

Zero-Shot Knowledge Distillation in Deep Networks. 4743-4751 - Amin Nayebi

, Alexander Munteanu, Matthias Poloczek:
A Framework for Bayesian Optimization in Embedded Subspaces. 4752-4761 - Seyedehsara Nayer, Praneeth Narayanamurthy, Namrata Vaswani:

Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements. 4762-4770 - Eugène Ndiaye, Tam Le, Olivier Fercoq, Joseph Salmon, Ichiro Takeuchi:

Safe Grid Search with Optimal Complexity. 4771-4780 - Thomas Nedelec, Noureddine El Karoui, Vianney Perchet:

Learning to bid in revenue-maximizing auctions. 4781-4789 - Quynh Nguyen:

On Connected Sublevel Sets in Deep Learning. 4790-4799 - Duc Tam Nguyen, Zhongyu Lou, Michael Klar, Thomas Brox:

Anomaly Detection With Multiple-Hypotheses Predictions. 4800-4809 - Thanh Huy Nguyen, Umut Simsekli, Gaël Richard:

Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization. 4810-4819 - Rajbir-Singh Nirwan, Nils Bertschinger:

Rotation Invariant Householder Parameterization for Bayesian PCA. 4820-4828 - Richard Nock, Robert C. Williamson:

Lossless or Quantized Boosting with Integer Arithmetic. 4829-4838 - Arild Nøkland, Lars Hiller Eidnes:

Training Neural Networks with Local Error Signals. 4839-4850 - Guido Novati, Petros Koumoutsakos:

Remember and Forget for Experience Replay. 4851-4860 - Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, Armando Solar-Lezama

:
Learning to Infer Program Sketches. 4861-4870 - Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin T. Chiu, Alexander M. Rush

, Noah D. Goodman:
Tensor Variable Elimination for Plated Factor Graphs. 4871-4880 - Michael Oberst, David A. Sontag:

Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models. 4881-4890 - Peter Ochs, Yura Malitsky:

Model Function Based Conditional Gradient Method with Armijo-like Line Search. 4891-4900 - Augustus Odena, Catherine Olsson, David G. Andersen, Ian J. Goodfellow:

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. 4901-4911 - Dino Oglic, Thomas Gärtner:

Scalable Learning in Reproducing Kernel Krein Spaces. 4912-4921 - Kenta Oono, Taiji Suzuki:

Approximation and non-parametric estimation of ResNet-type convolutional neural networks. 4922-4931 - Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu:

Orthogonal Random Forest for Causal Inference. 4932-4941 - Muhammad Osama, Dave Zachariah, Thomas B. Schön:

Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding. 4942-4950 - Samet Oymak, Mahdi Soltanolkotabi

:
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path? 4951-4960 - Ioannis Panageas, Georgios Piliouras, Xiao Wang:

Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always. 4961-4969 - Tianyu Pang, Kun Xu, Chao Du, Ning Chen, Jun Zhu:

Improving Adversarial Robustness via Promoting Ensemble Diversity. 4970-4979 - Konstantinos P. Panousis, Sotirios Chatzis, Sergios Theodoridis:

Nonparametric Bayesian Deep Networks with Local Competition. 4980-4988 - Matteo Papini

, Alberto Maria Metelli, Lorenzo Lupo, Marcello Restelli:
Optimistic Policy Optimization via Multiple Importance Sampling. 4989-4999 - Nikolaos Pappas

, James Henderson:
Deep Residual Output Layers for Neural Language Generation. 5000-5011 - Vardan Papyan:

Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians. 5012-5021 - Sobhan Naderi Parizi, Kun He, Reza Aghajani, Stan Sclaroff, Pedro F. Felzenszwalb:

Generalized Majorization-Minimization. 5022-5031 - Yookoon S. Park, Chris Dongjoo Kim, Gunhee Kim:

Variational Laplace Autoencoders. 5032-5041 - Daniel S. Park, Jascha Sohl-Dickstein, Quoc V. Le, Samuel L. Smith:

The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study. 5042-5051 - Sejun Park, Eunho Yang, Se-Young Yun, Jinwoo Shin:

Spectral Approximate Inference. 5052-5061 - Deepak Pathak, Dhiraj Gandhi, Abhinav Gupta:

Self-Supervised Exploration via Disagreement. 5062-5071 - François-Pierre Paty, Marco Cuturi:

Subspace Robust Wasserstein Distances. 5072-5081 - Supratik Paul, Michael A. Osborne

, Shimon Whiteson:
Fingerprint Policy Optimisation for Robust Reinforcement Learning. 5082-5091 - Xi Peng, Zhenyu Huang, Jiancheng Lv, Hongyuan Zhu, Joey Tianyi Zhou:

COMIC: Multi-view Clustering Without Parameter Selection. 5092-5101 - Xingchao Peng, Zijun Huang, Ximeng Sun, Kate Saenko:

Domain Agnostic Learning with Disentangled Representations. 5102-5112 - Hanyu Peng, Jiaxiang Wu, Shifeng Chen, Junzhou Huang:

Collaborative Channel Pruning for Deep Networks. 5113-5122 - Pierre Perrault, Vianney Perchet, Michal Valko:

Exploiting structure of uncertainty for efficient matroid semi-bandits. 5123-5132 - David D. Bourgin, Joshua C. Peterson, Daniel Reichman, Stuart J. Russell, Thomas L. Griffiths:

Cognitive model priors for predicting human decisions. 5133-5141 - Mary Phuong, Christoph Lampert:

Towards Understanding Knowledge Distillation. 5142-5151 - A. J. Piergiovanni, Michael S. Ryoo:

Temporal Gaussian Mixture Layer for Videos. 5152-5161 - Vladislav Polianskii, Florian T. Pokorny:

Voronoi Boundary Classification: A High-Dimensional Geometric Approach via Weighted Monte Carlo Integration. 5162-5170 - Ben Poole, Sherjil Ozair, Aäron van den Oord, Alexander A. Alemi, George Tucker:

On Variational Bounds of Mutual Information. 5171-5180 - Manish Purohit, Sreenivas Gollapudi, Manish Raghavan:

Hiring Under Uncertainty. 5181-5189 - Xun Qian, Zheng Qu, Peter Richtárik:

SAGA with Arbitrary Sampling. 5190-5199 - Xun Qian, Peter Richtárik, Robert M. Gower, Alibek Sailanbayev, Nicolas Loizou, Egor Shulgin:

SGD with Arbitrary Sampling: General Analysis and Improved Rates. 5200-5209 - Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang, Mark Hasegawa-Johnson:

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss. 5210-5219 - Aurick Qiao, Bryon Aragam, Bingjing Zhang, Eric P. Xing:

Fault Tolerance in Iterative-Convergent Machine Learning. 5220-5230 - Yao Qin, Nicholas Carlini, Garrison W. Cottrell, Ian J. Goodfellow, Colin Raffel:

Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition. 5231-5240 - Meng Qu, Yoshua Bengio, Jian Tang:

GMNN: Graph Markov Neural Networks. 5241-5250 - Chao Qu, Shie Mannor, Huan Xu:

Nonlinear Distributional Gradient Temporal-Difference Learning. 5251-5260 - Goran Radanovic, Rati Devidze, David C. Parkes, Adish Singla

:
Learning to Collaborate in Markov Decision Processes. 5261-5270 - Jack W. Rae, Sergey Bartunov, Timothy P. Lillicrap:

Meta-Learning Neural Bloom Filters. 5271-5280 - Maithra Raghu, Katy Blumer, Rory Sayres, Ziad Obermeyer, Robert D. Kleinberg, Sendhil Mullainathan, Jon M. Kleinberg:

Direct Uncertainty Prediction for Medical Second Opinions. 5281-5290 - Arvind U. Raghunathan, Anoop Cherian, Devesh K. Jha:

Game Theoretic Optimization via Gradient-based Nikaido-Isoda Function. 5291-5300 - Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron C. Courville:

On the Spectral Bias of Neural Networks. 5301-5310 - Tahrima Rahman, Shasha Jin, Vibhav Gogate

:
Look Ma, No Latent Variables: Accurate Cutset Networks via Compilation. 5311-5320 - Shashank Rajput, Zhili Feng, Zachary Charles, Po-Ling Loh, Dimitris S. Papailiopoulos:

Does Data Augmentation Lead to Positive Margin? 5321-5330 - Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, Deirdre Quillen:

Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables. 5331-5340 - Alain Rakotomamonjy, Gilles Gasso, Joseph Salmon:

Screening rules for Lasso with non-convex Sparse Regularizers. 5341-5350 - Karthikeyan Natesan Ramamurthy, Kush R. Varshney, Krishnan Mody:

Topological Data Analysis of Decision Boundaries with Application to Model Selection. 5351-5360 - Neale Ratzlaff, Fuxin Li:

HyperGAN: A Generative Model for Diverse, Performant Neural Networks. 5361-5369 - Sujith Ravi:

Efficient On-Device Models using Neural Projections. 5370-5379 - Ramin Raziperchikolaei, Harish S. Bhat:

A Block Coordinate Descent Proximal Method for Simultaneous Filtering and Parameter Estimation. 5380-5388 - Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, Vaishaal Shankar:

Do ImageNet Classifiers Generalize to ImageNet? 5389-5400 - Henry W. J. Reeve, Ata Kabán:

Fast Rates for a kNN Classifier Robust to Unknown Asymmetric Label Noise. 5401-5409 - Yi Ren, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, Tie-Yan Liu:

Almost Unsupervised Text to Speech and Automatic Speech Recognition. 5410-5419 - Hongyu Ren, Shengjia Zhao, Stefano Ermon:

Adaptive Antithetic Sampling for Variance Reduction. 5420-5428 - Alon Resler, Yishay Mansour:

Adversarial Online Learning with noise. 5429-5437 - Alireza Rezaei, Shayan Oveis Gharan:

A Polynomial Time MCMC Method for Sampling from Continuous Determinantal Point Processes. 5438-5447 - Bastian Rieck

, Christian Bock
, Karsten M. Borgwardt:
A Persistent Weisfeiler-Lehman Procedure for Graph Classification. 5448-5458 - Paul Rolland, Ali Kavis, Alexander Immer, Adish Singla

, Volkan Cevher
:
Efficient learning of smooth probability functions from Bernoulli tests with guarantees. 5459-5467 - Joshua Romoff, Peter Henderson, Ahmed Touati, Yann Ollivier, Joelle Pineau, Emma Brunskill:

Separable value functions across time-scales. 5468-5477 - Aviv Rosenberg, Yishay Mansour:

Online Convex Optimization in Adversarial Markov Decision Processes. 5478-5486 - Simone Rossi, Pietro Michiardi, Maurizio Filippone:

Good Initializations of Variational Bayes for Deep Models. 5487-5497 - Kevin Roth, Yannic Kilcher, Thomas Hofmann:

The Odds are Odd: A Statistical Test for Detecting Adversarial Examples. 5498-5507 - Grant M. Rotskoff, Samy Jelassi, Joan Bruna, Eric Vanden-Eijnden:

Neuron birth-death dynamics accelerates gradient descent and converges asymptotically. 5508-5517 - Vincent Roulet, Dmitriy Drusvyatskiy, Siddhartha S. Srinivasa, Zaïd Harchaoui:

Iterative Linearized Control: Stable Algorithms and Complexity Guarantees. 5518-5527 - Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G. Bellemare, Will Dabney:

Statistics and Samples in Distributional Reinforcement Learning. 5528-5536 - Francisco J. R. Ruiz, Michalis K. Titsias:

A Contrastive Divergence for Combining Variational Inference and MCMC. 5537-5545 - Ernest K. Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, Wotao Yin:

Plug-and-Play Methods Provably Converge with Properly Trained Denoisers. 5546-5557 - Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, Hervé Jégou:

White-box vs Black-box: Bayes Optimal Strategies for Membership Inference. 5558-5567 - Sam Safavi, José Bento:

Tractable n-Metrics for Multiple Graphs. 5568-5578 - Touqir Sajed, Or Sheffet:

An Optimal Private Stochastic-MAB Algorithm based on Optimal Private Stopping Rule. 5579-5588 - Hugh Salimbeni, Vincent Dutordoir, James Hensman, Marc Peter Deisenroth:

Deep Gaussian Processes with Importance-Weighted Variational Inference. 5589-5598 - Richard Santiago, F. Bruce Shepherd:

Multivariate Submodular Optimization. 5599-5609 - Tuhin Sarkar, Alexander Rakhlin:

Near optimal finite time identification of arbitrary linear dynamical systems. 5610-5618 - Ikuro Sato, Kohta Ishikawa, Guoqing Liu, Masayuki Tanaka:

Breaking Inter-Layer Co-Adaptation by Classifier Anonymization. 5619-5627 - Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, Hrishikesh Khandeparkar:

A Theoretical Analysis of Contrastive Unsupervised Representation Learning. 5628-5637 - Aaron Schein, Zhiwei Steven Wu, Alexandra Schofield, Mingyuan Zhou

, Hanna M. Wallach:
Locally Private Bayesian Inference for Count Models. 5638-5648 - Julien Schroeter, Kirill A. Sidorov, A. David Marshall:

Weakly-Supervised Temporal Localization via Occurrence Count Learning. 5649-5659 - Arjun Seshadri, Alex Peysakhovich, Johan Ugander:

Discovering Context Effects from Raw Choice Data. 5660-5669 - Rohin Shah, Noah Gundotra, Pieter Abbeel, Anca D. Dragan:

On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference. 5670-5679 - Lior Shani, Yonathan Efroni, Shie Mannor:

Exploration Conscious Reinforcement Learning Revisited. 5680-5689 - Vatsal Sharan, Kai Sheng Tai, Peter Bailis, Gregory Valiant:

Compressed Factorization: Fast and Accurate Low-Rank Factorization of Compressively-Sensed Data. 5690-5700 - Yujia Shen, Haiying Huang, Arthur Choi, Adnan Darwiche:

Conditional Independence in Testing Bayesian Networks. 5701-5709 - Weiran Shen, Sébastien Lahaie, Renato Paes Leme:

Learning to Clear the Market. 5710-5718 - Tianxiao Shen, Myle Ott, Michael Auli, Marc'Aurelio Ranzato:

Mixture Models for Diverse Machine Translation: Tricks of the Trade. 5719-5728 - Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, Chao Mi:

Hessian Aided Policy Gradient. 5729-5738 - Yanyao Shen, Sujay Sanghavi:

Learning with Bad Training Data via Iterative Trimmed Loss Minimization. 5739-5748 - Alexander Y. Shestopaloff, Arnaud Doucet:

Replica Conditional Sequential Monte Carlo. 5749-5757 - Jiaxin Shi, Mohammad Emtiyaz Khan, Jun Zhu:

Scalable Training of Inference Networks for Gaussian-Process Models. 5758-5768 - Weishi Shi, Qi Yu

:
Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning. 5769-5778 - Pranav Shyam, Wojciech Jaskowski, Faustino Gomez:

Model-Based Active Exploration. 5779-5788 - Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, Philip Alexander Levis:

Rehashing Kernel Evaluation in High Dimensions. 5789-5798 - Loïc Simon, Ryan Webster, Julien Rabin:

Revisiting precision recall definition for generative modeling. 5799-5808 - Carl-Johann Simon-Gabriel, Yann Ollivier, Léon Bottou, Bernhard Schölkopf, David Lopez-Paz:

First-Order Adversarial Vulnerability of Neural Networks and Input Dimension. 5809-5817 - Kirill Simonov, Fedor V. Fomin, Petr A. Golovach, Fahad Panolan:

Refined Complexity of PCA with Outliers. 5818-5826 - Umut Simsekli, Levent Sagun, Mert Gürbüzbalaban:

A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks. 5827-5837 - Rajhans Singh, Pavan K. Turaga

, Suren Jayasuriya, Ravi Garg, Martin W. Braun:
Non-Parametric Priors For Generative Adversarial Networks. 5838-5847 - Sahil Singla, Eric Wallace, Shi Feng, Soheil Feizi:

Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation. 5848-5856 - Lotfi Slim, Clément Chatelain, Chloé-Agathe Azencott, Jean-Philippe Vert:

kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection. 5857-5865 - Edward J. Smith, Scott Fujimoto, Adriana Romero, David Meger:

GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects. 5866-5876 - David R. So, Quoc V. Le, Chen Liang:

The Evolved Transformer. 5877-5886 - Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, Yung Yi:

QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning. 5887-5896 - Hao Song, Tom Diethe, Meelis Kull, Peter A. Flach:

Distribution calibration for regression. 5897-5906 - Hwanjun Song, Minseok Kim, Jae-Gil Lee:

SELFIE: Refurbishing Unclean Samples for Robust Deep Learning. 5907-5915 - Zhao Song, Ronald Parr, Lawrence Carin:

Revisiting the Softmax Bellman Operator: New Benefits and New Perspective. 5916-5925 - Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu:

MASS: Masked Sequence to Sequence Pre-training for Language Generation. 5926-5936 - Pedro Soto, Jun Li, Xiaodi Fan:

Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix Multiplication. 5937-5945 - Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, Anshumali Shrivastava:

Compressing Gradient Optimizers via Count-Sketches. 5946-5955 - Matthew Staib, Sashank J. Reddi, Satyen Kale, Sanjiv Kumar, Suvrit Sra:

Escaping Saddle Points with Adaptive Gradient Methods. 5956-5965 - Karl Stelzner, Robert Peharz, Kristian Kersting:

Faster Attend-Infer-Repeat with Tractable Probabilistic Models. 5966-5975 - Mitchell Stern, William Chan, Jamie Kiros, Jakob Uszkoreit:

Insertion Transformer: Flexible Sequence Generation via Insertion Operations. 5976-5985 - Asa Cooper Stickland, Iain Murray:

BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning. 5986-5995 - Matthew Streeter:

Learning Optimal Linear Regularizers. 5996-6004 - Yi Su, Lequn Wang, Michele Santacatterina, Thorsten Joachims:

CAB: Continuous Adaptive Blending for Policy Evaluation and Learning. 6005-6014 - Bing Su, Ying Wu:

Learning Distance for Sequences by Learning a Ground Metric. 6015-6025 - Wen Sun, Alina Beygelzimer, Hal Daumé III, John Langford, Paul Mineiro:

Contextual Memory Trees. 6026-6035 - Wen Sun, Anirudh Vemula, Byron Boots, Drew Bagnell:

Provably Efficient Imitation Learning from Observation Alone. 6036-6045 - Iiris Sundin, Peter Schulam, Eero Siivola, Aki Vehtari, Suchi Saria, Samuel Kaski:

Active Learning for Decision-Making from Imbalanced Observational Data. 6046-6055 - Raphael Suter, Ðorðe Miladinovic, Bernhard Schölkopf, Stefan Bauer:

Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness. 6056-6065 - Ryota Suzuki, Ryusuke Takahama, Shun Onoda:

Hyperbolic Disk Embeddings for Directed Acyclic Graphs. 6066-6075 - Amirhossein Taghvaei, Prashant G. Mehta:

Accelerated Flow for Probability Distributions. 6076-6085 - Kai Sheng Tai, Peter Bailis, Gregory Valiant:

Equivariant Transformer Networks. 6086-6095 - Corentin Tallec, Léonard Blier, Yann Ollivier:

Making Deep Q-learning methods robust to time discretization. 6096-6104 - Mingxing Tan, Quoc V. Le:

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 6105-6114 - Ping Liang Tan, Robert Peharz:

Hierarchical Decompositional Mixtures of Variational Autoencoders. 6115-6124 - Wenpin Tang:

Mallows ranking models: maximum likelihood estimate and regeneration. 6125-6134 - Da Tang, Dawen Liang, Tony Jebara, Nicholas Ruozzi

:
Correlated Variational Auto-Encoders. 6135-6144 - Da Tang, Rajesh Ranganath:

The Variational Predictive Natural Gradient. 6145-6154 - Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, Ji Liu:

DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression. 6155-6165 - Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, Aditya V. Nori:

Adaptive Neural Trees. 6166-6175 - Chenyang Tao, Shuyang Dai, Liqun Chen, Ke Bai, Junya Chen, Chang Liu, Ruiyi Zhang, Georgiy V. Bobashev, Lawrence Carin:

Variational Annealing of GANs: A Langevin Perspective. 6176-6185 - Zenna Tavares, Javier Burroni, Edgar Minasyan, Armando Solar-Lezama

, Rajesh Ranganath:
Predicate Exchange: Inference with Declarative Knowledge. 6186-6195 - Guy Tennenholtz, Shie Mannor:

The Natural Language of Actions. 6196-6205 - Yoshikazu Terada, Michio Yamamoto:

Kernel Normalized Cut: a Theoretical Revisit. 6206-6214 - Chen Tessler, Yonathan Efroni, Shie Mannor:

Action Robust Reinforcement Learning and Applications in Continuous Control. 6215-6224 - Philip S. Thomas, Erik G. Learned-Miller:

Concentration Inequalities for Conditional Value at Risk. 6225-6233 - Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati, Jamal Mohd-Yusof:

Combating Label Noise in Deep Learning using Abstention. 6234-6243 - Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick:

ELF OpenGo: an analysis and open reimplementation of AlphaZero. 6244-6253 - Malik Tiomoko, Romain Couillet, Florent Bouchard, Guillaume Ginolhac:

Random Matrix Improved Covariance Estimation for a Large Class of Metrics. 6254-6263 - Andrea Tirinzoni, Mattia Salvini, Marcello Restelli:

Transfer of Samples in Policy Search via Multiple Importance Sampling. 6264-6274 - Titouan Vayer, Nicolas Courty, Romain Tavenard, Laetitia Chapel, Rémi Flamary:

Optimal Transport for structured data with application on graphs. 6275-6284 - Anh Tong, Jaesik Choi:

Discovering Latent Covariance Structures for Multiple Time Series. 6285-6294 - Toan Tran, Thanh-Toan Do, Ian D. Reid, Gustavo Carneiro:

Bayesian Generative Active Deep Learning. 6295-6304 - Ngoc B. Tran, Daniel R. Kepple, Sergey Shuvaev, Alexei A. Koulakov:

DeepNose: Using artificial neural networks to represent the space of odorants. 6305-6314 - Brian L. Trippe, Jonathan H. Huggins, Raj Agrawal, Tamara Broderick:

LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations. 6315-6324 - William Trouleau, Jalal Etesami, Matthias Grossglauser, Negar Kiyavash, Patrick Thiran:

Learning Hawkes Processes Under Synchronization Noise. 6325-6334 - Manolis C. Tsakiris, Liangzu Peng:

Homomorphic Sensing. 6335-6344 - Ryan D. Turner, Jane Hung, Eric Frank, Yunus Saatchi, Jason Yosinski:

Metropolis-Hastings Generative Adversarial Networks. 6345-6353 - Ruo-Chun Tzeng, Shan-Hung Wu:

Distributed, Egocentric Representations of Graphs for Detecting Critical Structures. 6354-6362 - Jalaj Upadhyay:

Sublinear Space Private Algorithms Under the Sliding Window Model. 6363-6372 - Berk Ustun, Yang Liu, David C. Parkes:

Fairness without Harm: Decoupled Classifiers with Preference Guarantees. 6373-6382 - Viivi Uurtio, Sahely Bhadra, Juho Rousu:

Large-Scale Sparse Kernel Canonical Correlation Analysis. 6383-6391 - Marten van Dijk, Lam M. Nguyen, Phuong Ha Nguyen, Dzung T. Phan:

Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD. 6392-6400 - Benjamin van Niekerk, Steven James, Adam Christopher Earle, Benjamin Rosman:

Composing Value Functions in Reinforcement Learning. 6401-6409 - Francisco Vargas

, Kamen Brestnichki, Nils Hammerla:
Model Comparison for Semantic Grouping. 6410-6417 - Paroma Varma, Frederic Sala, Ann He, Alexander Ratner, Christopher Ré:

Learning Dependency Structures for Weak Supervision Models. 6418-6427 - Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra, Devi Parikh:

Probabilistic Neural Symbolic Models for Interpretable Visual Question Answering. 6428-6437 - Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, Yoshua Bengio:

Manifold Mixup: Better Representations by Interpolating Hidden States. 6438-6447 - Ramya Korlakai Vinayak, Weihao Kong, Gregory Valiant, Sham M. Kakade:

Maximum Likelihood Estimation for Learning Populations of Parameters. 6448-6457 - Mariia Vladimirova, Jakob Verbeek, Pablo Mesejo, Julyan Arbel:

Understanding Priors in Bayesian Neural Networks at the Unit Level. 6458-6467 - Nikos Vlassis, Aurélien Bibaut, Maria Dimakopoulou, Tony Jebara:

On the Design of Estimators for Bandit Off-Policy Evaluation. 6468-6476 - Aleksandr Vorobev, Aleksei Ustimenko, Gleb Gusev, Pavel Serdyukov:

Learning to select for a predefined ranking. 6477-6486 - Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, Michael A. Osborne

:
On the Limitations of Representing Functions on Sets. 6487-6494 - Ian Walker, Ben Glocker:

Graph Convolutional Gaussian Processes. 6495-6504 - Tong Wang:

Gaining Free or Low-Cost Interpretability with Interpretable Partial Substitute. 6505-6514 - Chaojie Wang, Bo Chen, Sucheng Xiao, Mingyuan Zhou

:
Convolutional Poisson Gamma Belief Network. 6515-6525 - Di Wang, Changyou Chen, Jinhui Xu:

Differentially Private Empirical Risk Minimization with Non-convex Loss Functions. 6526-6535 - Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, Yiannis Demiris:

Random Expert Distillation: Imitation Learning via Expert Policy Support Estimation. 6536-6544 - Po-Wei Wang, Priya L. Donti, Bryan Wilder, J. Zico Kolter:

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. 6545-6554 - Dilin Wang, ChengYue Gong, Qiang Liu:

Improving Neural Language Modeling via Adversarial Training. 6555-6565 - Chaoqi Wang, Roger B. Grosse, Sanja Fidler, Guodong Zhang:

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis. 6566-6575 - Dilin Wang, Qiang Liu:

Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models. 6576-6585 - Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, Quanquan Gu:

On the Convergence and Robustness of Adversarial Training. 6586-6595 - Cheng Wang, Mathias Niepert:

State-Regularized Recurrent Neural Networks. 6596-6606 - Yuyang Wang, Alex Smola, Danielle C. Maddix, Jan Gasthaus, Dean P. Foster, Tim Januschowski:

Deep Factors for Forecasting. 6607-6617 - Hao Wang, Berk Ustun, Flávio P. Calmon:

Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions. 6618-6627 - Di Wang, Jinhui Xu:

On Sparse Linear Regression in the Local Differential Privacy Model. 6628-6637 - Xiaojie Wang, Rui Zhang, Yu Sun, Jianzhong Qi:

Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random. 6638-6647 - Huan Wang, Stephan Zheng, Caiming Xiong, Richard Socher:

On the Generalization Gap in Reparameterizable Reinforcement Learning. 6648-6658 - Shengjie Wang, Tianyi Zhou, Jeff A. Bilmes:

Bias Also Matters: Bias Attribution for Deep Neural Network Explanation. 6659-6667 - Shengjie Wang, Tianyi Zhou, Jeff A. Bilmes:

Jumpout : Improved Dropout for Deep Neural Networks with ReLUs. 6668-6676 - Rachel A. Ward, Xiaoxia Wu, Léon Bottou:

AdaGrad stepsizes: sharp convergence over nonconvex landscapes. 6677-6686 - Dennis Wei, Sanjeeb Dash, Tian Gao, Oktay Günlük

:
Generalized Linear Rule Models. 6687-6696 - Xiaohan Wei, Zhuoran Yang, Zhaoran Wang:

On the statistical rate of nonlinear recovery in generative models with heavy-tailed data. 6697-6706 - Gellért Weisz, András György, Csaba Szepesvári:

CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration. 6707-6715 - Sean Welleck, Kianté Brantley, Hal Daumé III, Kyunghyun Cho:

Non-Monotonic Sequential Text Generation. 6716-6726 - Lily Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan Boopathy, Ivan V. Oseledets, Luca Daniel:

PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach. 6727-6736 - Wenliang Li, Danica J. Sutherland, Heiko Strathmann, Arthur Gretton:

Learning deep kernels for exponential family densities. 6737-6746 - Max Westphal

, Werner Brannath:
Improving Model Selection by Employing the Test Data. 6747-6756 - Jacob Whitehill, Anand Ramakrishnan:

Automatic Classifiers as Scientific Instruments: One Step Further Away from Ground-Truth. 6757-6765 - Christian Wildner

, Heinz Koeppl:
Moment-Based Variational Inference for Markov Jump Processes. 6766-6775 - William J. Wilkinson, Michael Riis Andersen, Joshua D. Reiss, Dan Stowell, Arno Solin:

End-to-End Probabilistic Inference for Nonstationary Audio Analysis. 6776-6785 - Robert C. Williamson, Aditya Krishna Menon:

Fairness risk measures. 6786-6797 - Samuel Wiqvist

, Pierre-Alexandre Mattei, Umberto Picchini, Jes Frellsen
:
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation. 6798-6807 - Eric Wong, Frank R. Schmidt, J. Zico Kolter:

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations. 6808-6817 - Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao

, Voot Tangkaratt, Masashi Sugiyama:
Imitation Learning from Imperfect Demonstration. 6818-6827 - Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix X. Yu, Daniel Niels Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, Sanjiv Kumar:

Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling. 6828-6839 - Xi-Zhu Wu, Song Liu, Zhi-Hua Zhou:

Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin. 6840-6849 - Yan Wu, Mihaela Rosca, Timothy P. Lillicrap:

Deep Compressed Sensing. 6850-6860 - Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, Kilian Q. Weinberger:

Simplifying Graph Convolutional Networks. 6861-6871 - Yifan Wu, Ezra Winston, Divyansh Kaushik, Zachary C. Lipton:

Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment. 6872-6881 - Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, Hongyuan Zha:

On Scalable and Efficient Computation of Large Scale Optimal Transport. 6882-6892 - Cong Xie, Sanmi Koyejo, Indranil Gupta:

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance. 6893-6901 - Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, Zhouchen Lin:

Differentiable Linearized ADMM. 6902-6911 - Hanwen Xing, Geoff Nicholls, Jeong Lee:

Calibrated Approximate Bayesian Inference. 6912-6920 - Jason Xu, Kenneth Lange:

Power k-Means Clustering. 6921-6931 - Hongteng Xu, Dixin Luo, Hongyuan Zha, Lawrence Carin:

Gromov-Wasserstein Learning for Graph Matching and Node Embedding. 6932-6941 - Yi Xu, Qi Qi, Qihang Lin, Rong Jin, Tianbao Yang:

Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence. 6942-6951 - Kelvin Xu, Ellis Ratner, Anca D. Dragan, Sergey Levine, Chelsea Finn:

Learning a Prior over Intent via Meta-Inverse Reinforcement Learning. 6952-6962 - Kai Xu, Akash Srivastava, Charles Sutton:

Variational Russian Roulette for Deep Bayesian Nonparametrics. 6963-6972 - Nishant Yadav, Ari Kobren, Nicholas Monath, Andrew McCallum:

Supervised Hierarchical Clustering with Exponential Linkage. 6973-6983 - Kaiyu Yang, Jia Deng:

Learning to Prove Theorems via Interacting with Proof Assistants. 6984-6994 - Lin Yang

, Mengdi Wang:
Sample-Optimal Parametric Q-Learning Using Linearly Additive Features. 6995-7004 - Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen, Chunjing Xu, Boxin Shi, Chao Xu, Chang Xu:

LegoNet: Efficient Convolutional Neural Networks with Lego Filters. 7005-7014 - Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, Christopher De Sa:

SWALP : Stochastic Weight Averaging in Low Precision Training. 7015-7024 - Yuzhe Yang, Guo Zhang, Zhi Xu, Dina Katabi:

ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation. 7025-7034 - Quanming Yao, James Tin-Yau Kwok, Bo Han:

Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations. 7035-7044 - Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li:

Hierarchically Structured Meta-learning. 7045-7054 - Taisuke Yasuda, David P. Woodruff, Manuel Fernandez:

Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel $k$-means Clustering. 7055-7063 - Jong Chul Ye, Woon Kyoung Sung:

Understanding Geometry of Encoder-Decoder CNNs. 7064-7073 - Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:

Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning. 7074-7084 - Dong Yin, Kannan Ramchandran, Peter L. Bartlett:

Rademacher Complexity for Adversarially Robust Generalization. 7085-7094 - Mingzhang Yin, Yuguang Yue, Mingyuan Zhou

:
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables. 7095-7104 - Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, Frank Hutter:

NAS-Bench-101: Towards Reproducible Neural Architecture Search. 7105-7114 - Sung Whan Yoon

, Jun Seo, Jaekyun Moon:
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning. 7115-7123 - Kaichao You, Ximei Wang, Mingsheng Long

, Michael I. Jordan:
Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation. 7124-7133 - Jiaxuan You, Rex Ying, Jure Leskovec:

Position-aware Graph Neural Networks. 7134-7143 - Halley Young, Osbert Bastani, Mayur Naik:

Learning Neurosymbolic Generative Models via Program Synthesis. 7144-7153 - Yue Yu, Jie Chen, Tian Gao, Mo Yu:

DAG-GNN: DAG Structure Learning with Graph Neural Networks. 7154-7163 - Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang

, Masashi Sugiyama:
How does Disagreement Help Generalization against Label Corruption? 7164-7173 - Hao Yu, Rong Jin:

On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization. 7174-7183 - Hao Yu, Rong Jin, Sen Yang:

On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization. 7184-7193 - Lantao Yu, Jiaming Song, Stefano Ermon:

Multi-Agent Adversarial Inverse Reinforcement Learning. 7194-7201 - Chen Yu, Hanlin Tang, Cédric Renggli, Simon Kassing, Ankit Singla, Dan Alistarh, Ce Zhang, Ji Liu:

Distributed Learning over Unreliable Networks. 7202-7212 - Jianjun Yuan, Andrew G. Lamperski:

Online Adaptive Principal Component Analysis and Its extensions. 7213-7221 - Jinyang Yuan, Bin Li, Xiangyang Xue:

Generative Modeling of Infinite Occluded Objects for Compositional Scene Representation. 7222-7231 - Huizhuo Yuan, Yuren Zhou, Chris Junchi Li, Qingyun Sun:

Differential Inclusions for Modeling Nonsmooth ADMM Variants: A Continuous Limit Theory. 7232-7241 - Jihun Yun, Peng Zheng, Eunho Yang, Aurélie C. Lozano, Aleksandr Y. Aravkin:

Trimming the $\ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning. 7242-7251 - Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia Hoang, Yasaman Khazaeni:

Bayesian Nonparametric Federated Learning of Neural Networks. 7252-7261 - Mikhail Yurochkin, Aritra Guha, Yuekai Sun, XuanLong Nguyen:

Dirichlet Simplex Nest and Geometric Inference. 7262-7271 - Alp Yurtsever, Olivier Fercoq, Volkan Cevher

:
A Conditional-Gradient-Based Augmented Lagrangian Framework. 7272-7281 - Alp Yurtsever, Suvrit Sra, Volkan Cevher

:
Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator. 7282-7291 - Eloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, Patrick Gallinari:

Context-Aware Zero-Shot Learning for Object Recognition. 7292-7303 - Andrea Zanette, Emma Brunskill:

Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds. 7304-7312 - Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, Yuan Yao:

Global Convergence of Block Coordinate Descent in Deep Learning. 7313-7323 - Richard Zhang:

Making Convolutional Networks Shift-Invariant Again. 7324-7334 - Chicheng Zhang, Alekh Agarwal, Hal Daumé III, John Langford, Sahand Negahban:

Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback. 7335-7344 - Hanrui Zhang, Yu Cheng, Vincent Conitzer:

When Samples Are Strategically Selected. 7345-7353 - Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, Augustus Odena:

Self-Attention Generative Adversarial Networks. 7354-7363 - Guo Zhang, Hao He, Dina Katabi:

Circuit-GNN: Graph Neural Networks for Distributed Circuit Design. 7364-7373 - Songyang Zhang, Xuming He, Shipeng Yan:

LatentGNN: Learning Efficient Non-local Relations for Visual Recognition. 7374-7383 - Tong Zhang, Pan Ji, Mehrtash Harandi, Wen-bing Huang, Hongdong Li:

Neural Collaborative Subspace Clustering. 7384-7393 - Xiao Zhang, Shizhong Liao:

Incremental Randomized Sketching for Online Kernel Learning. 7394-7403 - Yuchen Zhang, Tianle Liu, Mingsheng Long

, Michael I. Jordan:
Bridging Theory and Algorithm for Domain Adaptation. 7404-7413 - Lijun Zhang, Tie-Yan Liu, Zhi-Hua Zhou:

Adaptive Regret of Convex and Smooth Functions. 7414-7423 - Aonan Zhang, John W. Paisley:

Random Function Priors for Correlation Modeling. 7424-7433 - Fei Zhang, Guangming Shi:

Co-Representation Network for Generalized Zero-Shot Learning. 7434-7443 - Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, Sergey Levine:

SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning. 7444-7453 - Junyu Zhang, Lin Xiao:

A Composite Randomized Incremental Gradient Method. 7454-7462 - Chenyang Zhang, Guosheng Yin:

Fast and Stable Maximum Likelihood Estimation for Incomplete Multinomial Models. 7463-7471 - Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, Michael I. Jordan:

Theoretically Principled Trade-off between Robustness and Accuracy. 7472-7482 - Yunbo Zhang, Wenhao Yu, Greg Turk:

Learning Novel Policies For Tasks. 7483-7492 - Kai Zhang, Sheng Zhang, Jun Liu, Jun Wang, Jie Zhang:

Greedy Orthogonal Pivoting Algorithm for Non-Negative Matrix Factorization. 7493-7501 - Tianyuan Zhang, Zhanxing Zhu:

Interpreting Adversarially Trained Convolutional Neural Networks. 7502-7511 - Martin J. Zhang, James Zou, David Tse:

Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits. 7512-7522 - Han Zhao, Remi Tachet des Combes, Kun Zhang, Geoffrey J. Gordon:

On Learning Invariant Representations for Domain Adaptation. 7523-7532 - Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, Maya R. Gupta:

Metric-Optimized Example Weights. 7533-7542 - Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang:

Improving Neural Network Quantization without Retraining using Outlier Channel Splitting. 7543-7552 - Rui Zhao, Xudong Sun, Volker Tresp:

Maximum Entropy-Regularized Multi-Goal Reinforcement Learning. 7553-7562 - Baojian Zhou, Feng Chen, Yiming Ying:

Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization. 7563-7573 - Dongruo Zhou

, Quanquan Gu:
Lower Bounds for Smooth Nonconvex Finite-Sum Optimization. 7574-7583 - Zhiming Zhou, Jiadong Liang, Yuxuan Song, Lantao Yu, Hongwei Wang, Weinan Zhang, Yong Yu, Zhihua Zhang:

Lipschitz Generative Adversarial Nets. 7584-7593 - Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, Tuo Zhao:

Toward Understanding the Importance of Noise in Training Neural Networks. 7594-7602 - Hongpeng Zhou, Minghao Yang, Jun Wang, Wei Pan:

BayesNAS: A Bayesian Approach for Neural Architecture Search. 7603-7613 - Chen Zhu, W. Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, Tom Goldstein:

Transferable Clean-Label Poisoning Attacks on Deep Neural Nets. 7614-7623 - Chun Jiang Zhu, Sabine Storandt, Kam-yiu Lam, Song Han, Jinbo Bi:

Improved Dynamic Graph Learning through Fault-Tolerant Sparsification. 7624-7633 - Yuqing Zhu, Yu-Xiang Wang:

Poission Subsampled Rényi Differential Privacy. 7634-7642 - Pengkai Zhu, Hanxiao Wang, Venkatesh Saligrama:

Learning Classifiers for Target Domain with Limited or No Labels. 7643-7653 - Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, Jinwen Ma:

The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects. 7654-7663 - Zhenxun Zhuang, Ashok Cutkosky

, Francesco Orabona:
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization. 7664-7672 - Zachary M. Ziegler, Alexander M. Rush

:
Latent Normalizing Flows for Discrete Sequences. 7673-7682 - Julian Zimmert, Haipeng Luo, Chen-Yu Wei:

Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously. 7683-7692 - Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson:

Fast Context Adaptation via Meta-Learning. 7693-7702 - Tijana Zrnic, Moritz Hardt:

Natural Analysts in Adaptive Data Analysis. 7703-7711

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














